Publications by authors named "Kathryn M Nesbitt"

Obesity is one of the leading health concerns in the United States. Studies from human and rodent models suggest that inherent differences in the function of brain motivation centers, including the nucleus accumbens (NAc), contribute to overeating and thus obesity. For example, there are basal enhancements in the excitability of NAc GABAergic medium spiny neurons (MSN) and reductions in basal expression of AMPA-type glutamate receptors in obesity-prone vs obesity-resistant rats.

View Article and Find Full Text PDF

The neurochemical transmitter dopamine (DA) is implicated in a number of diseases states, including Parkinson's disease, schizophrenia, and drug abuse. DA terminal fields in the dorsal striatum and core region of the nucleus accumbens in the rat brain are organized as heterogeneous domains exhibiting fast and slow kinetic of DA release. The rates of dopamine release are significantly and substantially faster in the fast domains relative to the slow domains.

View Article and Find Full Text PDF

Recently we reported that nucleus accumbens (NAcc) dopamine (DA) tracks uncertainty during operant responding for non-caloric saccharin. We also showed that repeated intermittent exposure to this uncertainty, like exposure to drugs of abuse, leads to sensitization of the locomotor and NAcc DA effects of amphetamine and promotes the subsequent self-administration of the drug. Here we review these findings together with others showing that NAcc glutamate signaling is similarly affected by uncertainty.

View Article and Find Full Text PDF

Prior exposure to abused drugs leads to long-lasting neuroadaptations culminating in excessive drug intake. Given the comorbidity between substance use and gambling disorders, surprisingly little is known about the effects of exposure to reinforcement contingencies experienced during games of chance. As it is a central feature of these games, we characterized the effects of exposure to uncertainty on biochemical and behavioral effects normally observed in rats exposed to amphetamine.

View Article and Find Full Text PDF

Previous studies have demonstrated a role for norepinephrine (NE) in energy regulation and feeding, and basal differences have been observed in hypothalamic NE systems in obesity-prone vs. obesity-resistant rats. Differences in the function of brain reward circuits, including in the nucleus accumbens (NAc), have been shown in obesity-prone vs.

View Article and Find Full Text PDF

Microdialysis is well established in chemical neuroscience as a mainstay technology for real time intracranial chemical monitoring in both animal models and human patients. Evidence shows that microdialysis can be enhanced by mitigating the penetration injury caused during the insertion of microdialysis probes into brain tissue. Herein, we show that retrodialysis of dexamethasone in the rat cortex enhances the microdialysis detection of K and glucose transients induced by spreading depolarization.

View Article and Find Full Text PDF

Throughout the fields of biomedical imaging, materials analysis, and routine chemical analysis, it is desirable to have a toolkit of molecules that can allow noninvasive/remote chemical sensing with minimal sample preparation. Here, we describe the photophysical properties involved in photoacoustic (PA) measurements and present a detailed analysis of the requirements and complications involved in PA sensing. We report the use of nitrazine yellow (NY) as a well-behaved PA pH reporter molecule.

View Article and Find Full Text PDF

Dopamine (DA), a highly significant neurotransmitter in the mammalian central nervous system, operates on multiple time scales to affect a diverse array of physiological functions. The significance of DA in human health is heightened by its role in a variety of pathologies. Voltammetric measurements of electrically evoked DA release have brought to light the existence of a patchwork of DA kinetic domains in the dorsal striatum (DS) of the rat.

View Article and Find Full Text PDF

The power of microdialysis for in vivo neurochemical monitoring is a result of intense efforts to enhance microdialysis procedures, the probes themselves, and the analytical systems used for the analysis of dialysate samples. Our goal is to refine microdialysis further by focusing attention on what happens when the probes are implanted into brain tissue. It is broadly acknowledged that some tissue damage occurs, such that the tissue nearest the probes is disrupted from its normal state.

View Article and Find Full Text PDF

Online monitoring of serotonin in striatal dialysate from freely moving rats was carried out for more than 16 h at 1 min time resolution using microdialysis coupled online to a capillary HPLC system operating at about 500 bar and 50 °C. Several aspects of the system were optimized toward robust, in vivo online measurements. A two-loop, eight-port rotary injection valve demonstrated better consistency of continuous injections than the more commonly used two-loop, 10-port valve.

View Article and Find Full Text PDF

Microdialysis sampling in the brain is employed frequently in the chemical analysis of neurological function and disease, but implanting the probes, which are substantially larger than the size and spacing of brain cells and blood vessels, is injurious and triggers ischemia, gliosis, and cell death at the sampling site. The nature of the interface between the brain and the microdialysis probe is critical to the use of microdialysis as a neurochemical analysis technique. The objective of the work reported here was to investigate the potential of two compounds, dexamethasone, a glucocorticoid anti-inflammatory agent, and XJB-5-131, a mitochondrially targeted reactive oxygen species scavenger, to mitigate the penetration injury.

View Article and Find Full Text PDF