Publications by authors named "Kathryn M Mayer"

Purpose: The purpose of this study was to quantify the microscopic dose distribution surrounding gold nanoparticles (GNPs) irradiated at therapeutic energies and to measure the changes in cell survival in vitro caused by this dose enhancement.

Methods: The dose distributions from secondary electrons surrounding a single gold nanosphere and single gold nanocube of equal volume were both simulated using MCNP6. Dose enhancement factors (DEFs) in the 1 μm volume surrounding a GNP were calculated and compared between a nanosphere and nanocube and between 6 and 18 MV energies.

View Article and Find Full Text PDF

Background: Photothermal therapies have shown promise for treating pancreatic ductal adenocarcinoma when they can be applied selectively, but off-target heating can frustrate treatment outcomes. Improved strategies leveraging selective binding and localized heating are possible with precision medical approaches such as functionalized gold nanoparticles, but careful control of optical dosage and thermal generation would be imperative. However, the literature review revealed many groups assume liver properties for pancreas tissue or rely on insufficiently rigorous characterization studies.

View Article and Find Full Text PDF

Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles.

View Article and Find Full Text PDF

Induced hyperthermia has been demonstrated as an effective oncological treatment due to the reduced heat tolerance of most malignant tissues; however, most techniques for heat generation within a target volume are insufficiently selective, inducing heating and unintended damage to surrounding healthy tissues. Plasmonic photothermal therapy (PPTT) utilizes light in the near-infrared (NIR) region to induce highly localized heating in gold nanoparticles, acting as exogenous chromophores, while minimizing heat generation in nearby tissues. However, optimization of treatment parameters requires extensive and studies for each new type of pathology and tissue targeted for treatment, a process that can be substantially reduced by implementing computational modeling.

View Article and Find Full Text PDF

Dose enhancement due to gold nanoparticles (GNPs) has been quantified experimentally and through Monte Carlo simulations for external beam radiation therapy energies of 6 and 18 MV. The highest enhancement was observed for the 18 MV beam at the highest GNP concentration tested, amounting to a DEF of 1.02.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered.

View Article and Find Full Text PDF

Gold bipyramid (GBP) nanoparticles are promising for a range of biomedical applications, including biosensing and surface-enhanced Raman spectroscopy, due to their favorable optical properties and ease of chemical functionalization. Here we report improved synthesis methods, including preparation of gold seed particles with an increased shelf life of ∼1 month, and preparation of GBPs with significantly shortened synthesis time (< 1 h). We also report methods for the functionalization and bioconjugation of the GBPs, including functionalization with alkanethiol self-assembled monolayers (SAMs) and bioconjugation with proteins via carbodiimide cross-linking.

View Article and Find Full Text PDF

The purpose of this study is to define a simplified method to accurately predict and characterize kV cone beam computed tomography (kV CBCT) and computed tomography (CT) image contrast enhancement from gold nanoparticles (GNPs). Parameters of the kV CBCT of a Varian Novalis Tx linear accelerator and of a GE LightSpeed 4 Big Bore CT machine were modeled using the MCNP 6.2 Monte Carlo code.

View Article and Find Full Text PDF

Gold nanoparticles (GNPs) have been studied extensively as promising radiation dose enhancing agents. In the current study, the dose enhancement effect of GNPs for Ir-192 HDR brachytherapy is studied using Monte Carlo N-Particle code, version 6.2 (MCNP6.

View Article and Find Full Text PDF
Article Synopsis
  • MCNP6 is a Monte Carlo software from Los Alamos that simulates photon, neutron, and electron transport, particularly useful in radiation therapy.
  • The study focused on modeling the photon beam from a Varian 600C Clinical Linear Accelerator and compared simulation results with experimental measurements, such as percent depth dose curves and beam profiles.
  • Results showed a small mean absolute percentage difference between the model and experiments, providing a valuable example for MCNP6 users in medical physics to create accurate beam models for biomedical research and dose estimation.
View Article and Find Full Text PDF

Purpose: The purpose of this work is to introduce a simple yet accurate technique to measure the dose enhancement factor (DEF) of a citrate-capped gold nanoparticle (GNP) solution using EBT3 film in an Ir setup.

Methods: Dose enhancement factor is the ratio of absorbed dose in a solution compared to absorbed dose in water, assuming identical irradiation parameters. Citrate-capped GNPs were synthesized.

View Article and Find Full Text PDF

Most applications of aqueous plasmonic gold nanoparticles benefit from control of the core size and shape, control of the nature of the ligand shell, and a simple and widely applicable preparation method. Surface functionalization of such nanoparticles is readily achievable but is restricted to water-soluble ligands. Here we have obtained highly monodisperse and stable aqueous gold nanoparticles (core diameter ∼4.

View Article and Find Full Text PDF

Monolayer-protected clusters (MPCs), typified by the (Au, Ag)-thiolates, share dimensions and masses with aqueous globular proteins (enzymes), yet efficient bioanalytical methods have not proved applicable to MPC analytics. Here we demonstrate that direct facile ESI(+)MS analysis of MPCs succeeds, at the few-picomol level, for aqueous basic amino-terminated thiolates. Specifically, captamino-gold clusters, Au (SR) , wherein -R = -(CH)N(CH), are prepared quantitatively via a direct one-phase (aq/EtOH) method and are sprayed under weakly acidic conditions to yield intact 6.

View Article and Find Full Text PDF

Rationale: Monitoring clinical disease status in cystic fibrosis frequently requires invasive collection of clinical samples. Due to its noninvasive collection process and direct anatomic relationship with the lower airway, saliva shows great potential as a biological fluid for cystic fibrosis monitoring.

Objectives: To measure the levels of multiple protein markers in human saliva supernatants and investigate the possibility of utilizing them to provide a more quantitative measure of disease state for use in research and monitoring of patients with cystic fibrosis clinically.

View Article and Find Full Text PDF

Catalytic activities and kinetics are measured at the single-particle level for gold nanoparticles catalyzing a fluorogenic oxidation reaction. This measurement is accomplished by confining the reactions in optically addressable microwell arrays. Citrate-capped gold nanoparticles are isolated in sealed ∼70 fL microwells along with a substrate, and the accumulation of a fluorescent product over time is observed.

View Article and Find Full Text PDF

During the last decade, saliva has emerged as a potentially ideal diagnostic biofluid for noninvasive testing. In this paper, we present an automated, integrated platform useable by minimally trained personnel in the field for the diagnosis of respiratory diseases using human saliva as a sample specimen. In this platform, a saliva sample is loaded onto a disposable microfluidic chip containing all the necessary reagents and components required for saliva analysis.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor surface was fabricated by the deposition of gold nanorods on a glass substrate and subsequent immobilization of the DNA aptamer, which specifically bind to thrombin. This LSPR aptamer sensor showed a response of 6-nm λ(max) shift for protein binding with the detection limit of at least 10 pM, indicating one of the highest sensitivities achieved for thrombin detection by optical extinction LSPR. We also tested the LSPR sensor fabricated using gold bipyramid, which showed higher refractive index sensitivity than the gold nanorods, but the overall response of gold bipyramid sensor appears to be 25% less than that of the gold nanorod substrate, despite the approximately twofold higher refractive index sensitivity.

View Article and Find Full Text PDF

Ground state depletion with individual molecule return (GSDIM) is used to interrogate the location of individual fluorescence bursts from fluorophore-labelled DNA molecules on gold nanowire surfaces. Carboxytetramethyl rhodamine (TAMRA)-labelled double-stranded DNA molecules were bound to the surface of gold nanowires via gold-thiol linkages. Individual fluorescence bursts were spatially localized using point spread function fitting and used to reconstruct the image of the underlying nanowire.

View Article and Find Full Text PDF

Noble metal nanoparticles exhibit sharp spectral extinction peaks at visible and near-infrared frequencies due to the resonant excitation of their free electrons, termed localized surface plasmon resonance (LSPR). Since the resonant frequency is dependent on the refractive index of the nanoparticle surroundings, LSPR can be the basis for sensing molecular interactions near the nanoparticle surface. However, previous studies have not yet determined whether the LSPR mechanism can reach the ultimate sensing limit: the detection of individual molecules.

View Article and Find Full Text PDF

The strong cetyltrimethylammonium bromide (CTAB) surfactant responsible for the synthesis and stability of gold nanorod solutions complicates their biomedical applications. The critical parameter to maintain nanorod stability is the ratio of CTAB to nanorod concentration. The ratio is approximately 740,000 as determined by chloroform extraction of the CTAB from a nanorod solution.

View Article and Find Full Text PDF

Gold nanoparticles bound to substrates exhibit localized surface plasmon resonance (LSPR) in their optical extinction spectra at visible and near-infrared wavelengths. The LSPR wavelength is sensitive to the surrounding refractive index, enabling a simple, label-free immunoassay when capture antibodies are bound to the nanoparticles. Gold bipyramids are nanoparticles with a penta-twinned crystal structure, which have a sharp LSPR because of their high monodispersity.

View Article and Find Full Text PDF

Robust gold nanorod substrates were fabricated for refractive index sensing based on localized surface plasmon resonance (LSPR). The substrate sensitivity was 170 nm/RIU with a figure of merit of 1.3.

View Article and Find Full Text PDF

The electrostatic properties of biological membranes can be described by three parameters: the transmembrane potential, the membrane surface potential, and the membrane dipole potential. The first two are well characterized in terms of their magnitudes and biological effects. The dipole potential, however, is not well characterized.

View Article and Find Full Text PDF

The atomic force microscope (AFM) is sensitive to electric double layer interactions in electrolyte solutions, but provides only a qualitative view of interfacial electrostatics. We have fully characterized silicon nitride probe tips and other experimental parameters to allow a quantitative electrostatic analysis by AFM, and we have tested the validity of a simple analytical force expression through numerical simulations. As a test sample, we have measured the effective surface charge density of supported zwitterionic dioleoylphosphatidylcholine membranes with a variable fraction of anionic dioleoylphosphatidylserine.

View Article and Find Full Text PDF