Publications by authors named "Kathryn M M Messina"

While glucose-responsive insulin delivery systems are in widespread clinical use to treat insulin insufficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains understudied. A self-regulated glucagon release material is highly desired to mitigate the potential risks of severe insulin-induced hypoglycemia. Here, we describe a glucose-responsive polymeric nanosystem with glucagon covalently grafted to the end-group.

View Article and Find Full Text PDF

Purpose: Developing stable high concentration monoclonal antibody (mAb) formulations is increasingly important to move toward subcutaneous (SC) administration for better patient experience. Challenges stemming from protein-protein interactions in these crowded solutions, such as colloidal instability, limit the feasibility of some formulations because of concerns of safety, product quality, and/or manufacturability. Herein, we report novel random heteropolymer excipients that improve the colloidal stability of a high concentration mAb formulation for SC administration.

View Article and Find Full Text PDF

Insulin, the oldest U.S. Food and Drug Administration (FDA)-approved recombinant protein and a World Health Organization (WHO) essential medicine for treating diabetes globally, faces challenges due to its storage instability.

View Article and Find Full Text PDF

Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied.

View Article and Find Full Text PDF

Biomolecule-polymer conjugates are constructs that take advantage of the functional or otherwise beneficial traits inherent to biomolecules and combine them with synthetic polymers possessing specially tailored properties. The rapid development of novel biomolecule-polymer conjugates based on proteins, peptides, or nucleic acids has ushered in a variety of unique materials, which exhibit functional attributes including thermo-responsiveness, exceptional stability, and specialized specificity. Key to the synthesis of new biomolecule-polymer hybrids is the use of controlled polymerization techniques coupled with either grafting-from, grafting-to, or grafting-through methodology, each of which exhibit distinct advantages and/or disadvantages.

View Article and Find Full Text PDF