Publications by authors named "Kathryn M Keefer"

The early stages of protein misfolding remain incompletely understood, as most mammalian proteinopathies are only detected after irreversible protein aggregates have formed. Cross-seeding, where one aggregated protein templates the misfolding of a heterologous protein, is one mechanism proposed to stimulate protein aggregation and facilitate disease pathogenesis. Here, we demonstrate the existence of cross-seeding as a crucial step in the formation of the yeast prion [PSI ], formed by the translation termination factor Sup35.

View Article and Find Full Text PDF

Molecular chaperones are responsible for managing protein folding from translation through degradation. These crucial machines ensure that protein homeostasis is optimally maintained for cell health. However, 'too much of a good thing' can be deadly, and the excess of chaperones can be toxic under certain cellular conditions.

View Article and Find Full Text PDF

Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation.

View Article and Find Full Text PDF

The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion.

View Article and Find Full Text PDF