Publications by authors named "Kathryn M Hart"

To investigate how disulfide bonds can impact protein energy landscapes, we surveyed the effects of adding or removing a disulfide in two β-lactamase enzymes, TEM-1 and CTX-M-9. The homologs share a structure and 38% sequence identity, but only TEM-1 contains a native disulfide bond. They also differ in thermodynamic stability and in the number of states populated at equilibrium: CTX-M-9 is two-state whereas TEM-1 has an additional intermediate state.

View Article and Find Full Text PDF

Thermodynamic stability represents one important constraint on protein evolution, but the molecular basis for how mutations that change stability impact fitness remains unclear. Here, we demonstrate that a prevalent global suppressor mutation in TEM β-lactamase, M182T, increases fitness by reducing proteolysis . We also show that a synthetic mutation, M182S, can act as a global suppressor and suggest that its absence from natural populations is due to genetic inaccessibility rather than fundamental differences in the protein's stability or activity.

View Article and Find Full Text PDF

Home blood pressure monitoring provides important diagnostic information beyond in-office blood pressure readings and offers similar results to ambulatory blood pressure monitoring. Home blood pressure monitoring involves patients independently measuring their blood pressure with an electronic device, whereas ambulatory blood pressure monitoring involves patients wearing a portable monitor for 24 to 48 hours. Although ambulatory blood pressure monitoring is the diagnostic standard for measurement, home blood pressure monitoring is more practical and accessible to patients, and its use is recommended by the U.

View Article and Find Full Text PDF

Proteins are dynamic molecules that undergo conformational changes to a broad spectrum of different excited states. Unfortunately, the small populations of these states make it difficult to determine their structures or functional implications. Computer simulations are an increasingly powerful means to identify and characterize functionally relevant excited states.

View Article and Find Full Text PDF

Protein stabilization is fundamental to enzyme function and evolution, yet understanding the determinants of a protein's stability remains a challenge. This is largely due to a shortage of atomically detailed models for the ensemble of relevant protein conformations and their relative populations. For example, the M182T substitution in TEM β-lactamase, an enzyme that confers antibiotic resistance to bacteria, is stabilizing but the precise mechanism remains unclear.

View Article and Find Full Text PDF

Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered "undruggable" and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such "cryptic pockets," and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity.

View Article and Find Full Text PDF

Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein's folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale.

View Article and Find Full Text PDF

TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM's specificity.

View Article and Find Full Text PDF

The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets--called hidden allosteric sites--remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them.

View Article and Find Full Text PDF

Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (T(m)) by 20 °C.

View Article and Find Full Text PDF

We have developed a method for the rapid and unambiguous identification of sequences of hit compounds from one-bead-one-compound combinatorial libraries of peptide and peptoid ligands. The approach uses a cleavable linker that is hydrophilic to help reduce nonspecific binding to biological samples and allows for the attachment of a halogen tag, which greatly facilitates post-screening sequencing by tandem mass spectrometry (MS/MS). The linker is based on a tartaric acid unit, which, upon cleavage from resin, generates a C-terminal aldehyde.

View Article and Find Full Text PDF