Deployment of the Rht-B1b and Rht-D1b dwarfing genes helped facilitate the Green Revolution to increase wheat yields globally. Much is known of the influence of these genes on plant height and agronomic performance, but not of their effects on root architecture. We assessed 29 near-isogenic lines (NILs) representing 11 Green Revolution and alternative dwarfing genes across multiple genetic backgrounds for root architecture characteristics in controlled and field environments.
View Article and Find Full Text PDFHighly repeatable, nondestructive, and high-throughput measures of above-ground biomass (AGB) and crop growth rate (CGR) are important for wheat improvement programs. This study evaluates the repeatability of destructive AGB and CGR measurements in comparison to two previously described methods for the estimation of AGB from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). Across three field experiments, contrasting in available water supply and comprising up to 98 wheat genotypes varying for canopy architecture, several concurrent measurements of LiDAR and AGB were made from jointing to anthesis.
View Article and Find Full Text PDF