A range of novel hybrid ligands of the type, o-C6H4(CH2PBu(t)2)(CH2E) (E = P(C6F5)2, SBu(t), SPh, S(O)Bu(t), NR2, SiPh2H), have been synthesised in two or three steps from the common substrate, o-C6H4{CH2PBu(t)2(BH3)}(CH2Cl). The initial step involved treatment of the substrate with the appropriate nucleophilic reagent, or preparation of a Grignard reagent from o-C6H4{CH2PBu(t)2(BH3)}(CH2Cl) and reaction with the appropriate electrophile. In most cases, this versatile strategy produced air-stable crystalline ligand precursors.
View Article and Find Full Text PDFHere we report a new, bench-top synthesis for iron/iron oxide core/shell nanoparticles via the thermal decomposition of Fe(η(5)-C(6)H(3)Me(4))(2). The iron/iron oxide core/shell nanoparticles are superparamagnetic at room temperature and show improved negative contrast in T(2)-weighted MR imaging compared to pure iron oxides nanoparticles, and have a transverse relaxivity (r(2)) of 332 mM(-1) s(-1).
View Article and Find Full Text PDF