Publications by authors named "Kathryn Lande"

Article Synopsis
  • Whole-genome bisulfite sequencing helps study chromatin methylation, but existing analysis methods are often slow and may not be accurate.
  • The new R package, PCBS (Principal Component BiSulfite), provides a faster and more flexible solution for analyzing bisulfite sequencing data, excelling in identifying methylated regions and requiring minimal computational resources.
  • PCBS is publicly available on GitHub and CRAN, with user instructions provided online for easy access and implementation.
View Article and Find Full Text PDF

Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration.

View Article and Find Full Text PDF

Motivation: Whole-genome bisulfite sequencing is a powerful tool for analyzing chromatin methylation genome-wide, but analysis of whole-genome bisulfite data is hampered by slow, inaccurate, and inflexible pipelines.

Results: We developed PCBS, a computationally efficient R package for Whole Genome Bisulfite Sequencing analysis that demonstrates remarkable accuracy and flexibility compared to current tools. PCBS identifies differentially methylated loci and differentially methylated regions and offers novel functionality that allows for more targeted methylation analyses.

View Article and Find Full Text PDF

The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance is a promising precision medicine approach, and its potential to inform clinical decisions is now being tested in several large multiinstitutional clinical trials. PDOs are cultivated in the extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources.

View Article and Find Full Text PDF

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced.

View Article and Find Full Text PDF

The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance (pharmacotyping) is a promising precision medicine approach. The potential of this approach to inform clinical decisions is now being tested in several large multi-institutional clinical trials. PDOs are cultivated in extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially.

View Article and Find Full Text PDF

Species often include multiple ecotypes that are adapted to different environments. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics.

View Article and Find Full Text PDF