Background: Sepsis is a common and deadly syndrome, accounting for more than 11 million deaths annually. To mature a deeper understanding of the host and pathogen mechanisms contributing to poor outcomes in sepsis, and thereby possibly inform new therapeutic targets, sophisticated, and expensive biorepositories are typically required. We propose that remnant biospecimens are an alternative for mechanistic sepsis research, although the viability and scientific value of such remnants are unknown.
View Article and Find Full Text PDFToxic aggregation of pathogenic huntingtin protein (htt) is implicated in Huntington's disease and influenced by various factors, including the first seventeen amino acids at the N-terminus (Nt17) and the presence of lipid membranes. Nt17 has a propensity to form an amphipathic α-helix in the presence of binding partners, which promotes α-helix rich oligomer formation and facilitates htt/lipid interactions. Within Nt17 are multiple sites that are subject to post-translational modification, including acetylation and phosphorylation.
View Article and Find Full Text PDFUrinary tract infections (UTIs) are a common cause of sepsis worldwide. Annually, more than 60,000 US deaths can be attributed to sepsis secondary to UTIs, and African American/Black adults have higher incidence and case-fatality rates than non-Hispanic White adults. Molecular-level factors that may help partially explain differences in sepsis survival outcomes between African American/Black and Non-Hispanic White adults are not clear.
View Article and Find Full Text PDFIntra-abdominal infection is a common cause of sepsis, and intra-abdominal sepsis leads to ∼156 000 U.S. deaths annually.
View Article and Find Full Text PDFAutomation is necessary to increase sample processing throughput for large-scale clinical analyses. Replacement of manual pipettes with robotic liquid handler systems is especially helpful in processing blood-based samples, such as plasma and serum. These samples are very heterogenous, and protein expression can vary greatly from sample-to-sample, even for healthy controls.
View Article and Find Full Text PDFSeveral diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease (HD), are associated with specific proteins aggregating and depositing within tissues and/or cellular compartments. The aggregation of these proteins is characterized by the formation of extended, β-sheet rich fibrils, termed amyloid. In addition, a variety of other aggregate species also form, including oligomers and protofibrils.
View Article and Find Full Text PDF