Publications by authors named "Kathryn L Furr"

Introduction: Despite recent advances, triple-negative breast cancer (TNBC) patients remain at high risk for recurrence and metastasis, which creates the need for innovative therapeutic approaches to improve patient outcomes. Cryoablation is a promising, less invasive alternative to surgical resection, capable of inducing tumor necrosis via freeze/thaw cycles. Necrotic cell death results in increased inflammatory signals and release of preserved tumor antigens, which have the potential to boost the local and systemic anti-tumor immune response.

View Article and Find Full Text PDF

The objective of this study was to determine how housing temperature and genetic diversity affect the onset and severity of allogeneic T cell-induced tissue damage in mice subjected to reduced intensity conditioning (RIC). We found that adoptive transfer of allogeneic CD4 T cells from inbred donors into sub-lethally irradiated inbred recipients (I→I) housed at standard housing temperatures (ST; 22-24 °C) induced extensive BM and spleen damage in the absence of injury to any other tissue. Although engraftment of T cells in RIC-treated mice housed at their thermo-neutral temperature (TNT; 30-32 °C) also developed similar BM and spleen damage, their survival was markedly and significantly increased when compared to their ST counterparts.

View Article and Find Full Text PDF

GD2, a disialoganglioside, is present on the surface of most neuroblastomas, as well as on some other cancers, such as melanoma and osteogenic sarcoma. The anti-GD2 antibody ch14.18 (dinutuximab) has an FDA-registered indication for use as maintenance therapy for high-risk neuroblastoma with cytokines and 13-cis-retinoic acid after myeloablative therapy.

View Article and Find Full Text PDF

Background: Hematopoietic stem cell transplantation is a potential cure for certain life-threatening malignant and nonmalignant diseases. However, experimental and clinical studies have demonstrated that pre-transplant myeloablative conditioning damages the gut leading to translocation of intestinal bacteria and the development of acute graft vs. host disease (aGVHD).

View Article and Find Full Text PDF

Background: The use of inbred mice housed under standardized environmental conditions has been critical in identifying immuno-pathological mechanisms in different infectious and inflammatory diseases as well as revealing new therapeutic targets for clinical trials. Unfortunately, only a small percentage of preclinical intervention studies using well-defined mouse models of disease have progressed to clinically-effective treatments in patients. The reasons for this lack of bench-to-bedside transition are not completely understood; however, emerging data suggest that genetic diversity and housing environment may greatly influence muring immunity and inflammation.

View Article and Find Full Text PDF

One of the best characterized mouse models of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) is the CD4+CD45RBhigh T cell transfer model of chronic colitis. Following our relocation to Texas Tech University Health Sciences Center (TTUHSC), we observed a dramatic reduction in the incidence of moderate-to-severe colitis from a 16-year historical average of 90% at Louisiana State University Health Sciences Center (LSUHSC) to <30% at TTUHSC. We hypothesized that differences in the commensal microbiota at the 2 institutions may account for the differences in susceptibility to T cell-induced colitis.

View Article and Find Full Text PDF

The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses.

View Article and Find Full Text PDF

Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient's bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human.

View Article and Find Full Text PDF

The mammalian intestine encounters many more microorganisms than any other tissue in the body thus making it the largest and most complex component of the immune system. Indeed, there are greater than 100 trillion (10(14)) microbes within the healthy human intestine, and the total number of genes derived from this diverse microbiome exceeds that of the entire human genome by at least 100-fold. Our coexistence with the gut microbiota represents a dynamic and mutually beneficial relationship that is thought to be a major determinant of health and disease.

View Article and Find Full Text PDF

Simian immunodeficiency virus (SIV) infection of natural hosts is characterized by nonpathogenic chronic viremia, maintenance of gastrointestinal epithelial barrier integrity, and low numbers of target cells. Assessment of cell-associated virus load in T cell subsets in multiple anatomic compartments of chronically SIV-infected sabeus African green monkeys (AGMs) revealed that gastrointestinal memory CD4(+) T lymphocytes are a major source of cell-associated virus and a significant contributor to SIV viremia in AGMs.

View Article and Find Full Text PDF

Because it is thought that mucosal tissues play a fundamental role in early HIV/SIV infection, it is crucial to understand the virus-specific responses in mucosal tissues to facilitate devising strategies to prevent and control these infections. We have employed TCR repertoire analyses to define the clonal composition of a dominant SIV epitope-specific CD8(+) T cell population in mucosal and systemic compartments of SIV-infected rhesus monkeys during both acute and chronic infection. We show that the CD8(+) T cell repertoire in mucosal tissues of uninfected rhesus monkeys is oligoclonal, whereas the CD8(+) T cell repertoire in blood is polyclonal.

View Article and Find Full Text PDF

The induction and perpetuation of chronic colitis are thought to involve a complex set of adhesive interactions between T cells and endothelial cells located on the vasculature within secondary lymphoid tissue and the intestine. The objective of this study was to assess the roles of T cell-associated CD18, CD62L (L-selectin), ICAM-1, and P-selectin glycoprotein ligand-1 (PSGL-1) in the induction of chronic colitis in mice. CD4(+)CD25(-) T cells derived from either wild-type (WT), CD18-deficient [CD18 knockout (KO)], CD62L KO, ICAM-1 KO, or PSGL-1 KO mice were adoptively transferred into recombinase activating gene-1 (RAG-1)-deficient mice (RAG KO mice) to assess the potential of these T cells to induce chronic colitis.

View Article and Find Full Text PDF

The beta2 integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) is important for lymphocyte trafficking and activation as well as recruitment to sites of tissue inflammation. The objective of this study was to assess the role of 'T-cell-associated' LFA-1 in the pathogenesis of chronic colitis in vivo. Transfer of CD4+CD25- T cells isolated from wild-type (wt) mice into immunodeficient recipients [recombinase-activating gene-1-deficient (RAG-1-/-] produced moderate to severe colitis, whereas RAG-1-/- mice injected with CD11a-deficient (CD11a-/-; LFA-1-/-) donor T cells displayed minimal macroscopic and histological evidence of colitis.

View Article and Find Full Text PDF

It is well known that transfer of CD4+CD45RBhigh (naïve) T cells into syngeneic lymphocyte-deficient mice induces chronic colitis. However, no studies have reported the presence of small bowel inflammation in this T cell-dependent model. Therefore, the objective of this study was to evaluate and compare small and large bowel inflammation induced by transfer of naïve T cells into two different immunodeficient recipient mice.

View Article and Find Full Text PDF