Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction between skyrmions, varies from conventional magnetic systems. Recent works have suggested that the ordering kinetics in these materials occur over millisecond or longer timescales, which is unusually slow for magnetic dynamics.
View Article and Find Full Text PDFAdvances in the synthesis and characterization of colloidal magnetic nanoparticles (NPs) have yielded great gains in the understanding of their complex magnetic behavior, with implications for numerous applications. Recent work using Ni NPs as a model soft ferromagnetic system, for example, achieved quantitative understanding of the superparamagnetic blocking temperature-particle diameter relationship. This hinged, however, on the critical assumption of a ferromagnetic NP volume lower than the chemical volume due to a non-ferromagnetic dead shell indirectly deduced from magnetometry.
View Article and Find Full Text PDFWe study the assembly of magnetite nanoparticles in water-based ferrofluids in wetting layers close to silicon substrates with different functionalization without and with an out-of-plane magnetic field. For particles of nominal sizes 5, 15, and 25 nm, we extract density profiles from neutron reflectivity measurements. We show that self-assembly is only promoted by a magnetic field if a seed layer is formed at the silicon substrate.
View Article and Find Full Text PDFGeometric frustration in the kagome lattice makes it a great host for the flat electronic band, nontrivial topological properties, and novel magnetism. Here, we use magnetotransport measurements to map out the field-temperature phase diagram of the centrosymmetric YMnSn with a Mn kagome lattice and show that the system exhibits the topological Hall effect (THE) with an in-plane applied magnetic field around 240 K. In addition, our neutron diffraction results demonstrate that the observed THE cannot arise from a magnetic skyrmion lattice, but instead from an in-plane field-induced double-fan spin structure with -axis components.
View Article and Find Full Text PDFWe reveal the assembly of magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-of-plane anisotropy. From neutron reflectometry experiments we extract density profiles and show that the particles self-assemble into layers at the magnetic surface. The layers are extremely stable against cleaning and rinsing of the substrate.
View Article and Find Full Text PDFThe controlled size and surface treatment of magnetic nanoparticles (NPs) make one-stage combination feasible for enhanced magnetic resonance imaging (MRI) contrast and effective hyperthermia. However, superparamagnetic behavior, essential for avoiding the aggregation of magnetic NPs, substantially limits their performance. Here, a superparamagnetic core-shell structure is developed, which promotes the formation of vortex-like intraparticle magnetization structures in the remanent state, leading to reduced dipolar interactions between two neighboring NPs, while during an MRI scan, the presence of a DC magnetic field induces the formation of NP chains, introducing increased local inhomogeneous dipole fields that enhance relaxivity.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers.
View Article and Find Full Text PDFIn the work reported herein, we investigate the practicality of a recently introduced variant of a general phase-sensitive method in small-angle neutron scattering that attempts to address the loss of phase-information as well as the orientational averaging simultaneously-through the use of reference structures in conjunction with finite element analysis. In particular, one possible physical realization of this approach is to employ polarized beams together with a magnetic reference connected to the sample object. We report on a first such practical implementation by successfully recovering the structure of a core-shell nanoparticle system.
View Article and Find Full Text PDFInelastic neutron scattering is utilized to directly measure inter-nanoparticle spin waves, or magnons, which arise from the magnetic coupling between 8.4 nm ferrite nanoparticles that are self-assembled into a close-packed lattice, yet are physically separated by oleic acid surfactant. The resulting dispersion curve yields a physically-reasonable, non-negative energy gap only when the effective is reduced by the inter-particle spacing.
View Article and Find Full Text PDFA comprehensive three-dimensional picture of magnetic ordering in high-density arrays of segmented FeGa/Cu nanowires is experimentally realized through the application of polarized small-angle neutron scattering. The competing energetics of dipolar interactions, shape anisotropy, and Zeeman energy in concert stabilize a highly tunable spin structure that depends heavily on the applied field and sample geometry. Consequently, we observe ferromagnetic and antiferromagnetic interactions both among wires and between segments within individual wires.
View Article and Find Full Text PDFHere it is demonstrated that multiple-energy, anomalous small-angle X-ray scattering (ASAXS) provides significant enhancement in sensitivity to internal material boundaries of layered nanoparticles compared with the traditional modeling of a single scattering energy, even for cases in which high scattering contrast naturally exists. Specifically, the material-specific structure of monodispersed Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles is determined, and the contribution of each component to the total scattering profile is identified with unprecedented clarity. We show that Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles with a diameter of 8.
View Article and Find Full Text PDF