Publications by authors named "Kathryn Jacobson"

Pelvic organ prolapse is a debilitating condition that diminishes quality of life, and it has been linked to pregnancy and aging. Injury of the uterosacral ligaments (USLs), which provide apical support to the pelvic organs, is a major cause of uterine prolapse. In this study, we examined the effect of pregnancy and age on the apparent elastic modulus, susceptibility to collagen damage, and extracellular matrix (ECM) composition of the murine USL.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is an integral part of multicellular organisms, connecting different cell layers and tissue types. During morphogenesis and growth, tissues undergo substantial reorganization. While it is intuitive that the ECM remodels in concert, little is known regarding how matrix composition and organization change during development.

View Article and Find Full Text PDF

Background: Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding protein dynamics in development and disease. Probing the nascent proteome can be achieved using non-canonical amino acids (ncAAs) to selectively label the NSPs utilizing endogenous translation machinery, which can then be quantitated with mass spectrometry. We have previously demonstrated that labeling the murine proteome is feasible via injection of azidohomoalanine (Aha), an ncAA and methionine (Met) analog, without the need for Met depletion.

View Article and Find Full Text PDF

The myotendinous junction (MTJ) contributes to the generation of motion by connecting muscle to tendon. At the adult MTJ, a specialized extracellular matrix (ECM) is thought to contribute to the mechanical integrity of the muscle-tendon interface, but the factors that influence MTJ formation during mammalian development are unclear. Here, we combined 3D imaging and proteomics with murine models in which muscle contractility and patterning are disrupted to resolve morphological and compositional changes in the ECM during MTJ development.

View Article and Find Full Text PDF

Background: The interstitial extracellular matrix (ECM) is comprised of proteins and glycosaminoglycans and provides structural and biochemical information during development. Our previous work revealed the presence of transient ECM-based structures in the interstitial matrix of developing kidneys. Stromal cells are the main contributors to interstitial ECM synthesis, and the transcription factor Forkhead Box D1 (Foxd1) is critical for stromal cell function.

View Article and Find Full Text PDF

Re-creating features of the native extracellular matrix (ECM) with engineered biomaterials has become a valuable tool to probe the influence of ECM properties on cellular functions (e.g., differentiation) and toward the engineering of tissues.

View Article and Find Full Text PDF

All perennial plants harbor diverse endophytic fungal communities, but why they tolerate these complex asymptomatic symbioses is unknown. Using a multi-pronged approach, we conclusively found that a dryland grass supports endophyte communities comprised predominantly of latent saprophytes that can enhance localized nutrient recycling after senescence. A perennial bunchgrass, , which persists along a gradient of extreme abiotic stress in the hyper-arid Namib Sand Sea, was the focal point of our study.

View Article and Find Full Text PDF

Background: The extracellular matrix (ECM) is a network of proteins and glycosaminoglycans that provides structural and biochemical cues to cells. In the kidney, the ECM is critical for nephrogenesis; however, the dynamics of ECM composition and how it relates to 3D structure during development is unknown.

Methods: Using embryonic day 14.

View Article and Find Full Text PDF

Non-rainfall moisture (fog, dew, and water vapor; NRM) is an important driver of plant litter decomposition in grasslands, where it can contribute significantly to terrestrial carbon cycling. However, we still do not know whether microbial decomposers respond differently to NRM and rain, nor whether this response affects litter decomposition rates. To determine how local moisture regimes influence decomposer communities and their function, we examined fungal communities on standing grass litter at an NRM-dominated site and a rain-dominated site 75 km apart in the hyper-arid Namib Desert using a reciprocal transplant design.

View Article and Find Full Text PDF

The myotendinous junction is a highly interdigitated interface designed to transfer muscle-generated force to tendon. Understanding how this interface is formed and organized, as well as identifying tendon- and muscle-specific extracellular matrix (ECM), is critical for designing effective regenerative therapies to restore functionality to damaged muscle-tendon units. However, a comparative analysis of the ECM proteome across this interface has not been conducted.

View Article and Find Full Text PDF

Introduction: Mapping protein synthesis and turnover during development will provide insight into functional tissue assembly; however, quantitative characterization has been hindered by a lack of tools. To address this gap, we previously demonstrated murine embryos can be labeled with the non-canonical amino acid azidohomoalanine (Aha), which enables the enrichment and identification of newly synthesized proteins. Using this technique, we now show how protein turnover varies as a function of both time and cellular compartment during murine development.

View Article and Find Full Text PDF

The hyper-arid western Namib Sand Sea (mean annual rainfall 0-17 mm) is a detritus-based ecosystem in which primary production is driven by large, but infrequent rainfall events. A diverse Namib detritivore community is sustained by minimal moisture inputs from rain and fog. The decomposition of plant material in the Namib Sand Sea (NSS) has long been assumed to be the province of these detritivores, with beetles and termites alone accounting for the majority of litter losses.

View Article and Find Full Text PDF

Aspergillus niger is an asexual, haploid fungus which infects the seeds of Namibia's national plant, Welwitschia mirabilis, severely affecting plant viability. We used 31 randomly amplified polymorphic DNA markers to assess genetic variation among 89 A. niger isolates collected from three W.

View Article and Find Full Text PDF