Background: Over their evolutionary history, corals have adapted to sea level rise and increasing ocean temperatures, however, it is unclear how quickly they may respond to rapid change. Genome structure and genetic diversity contained within may highlight their adaptive potential.
Results: We present chromosome-scale genome assemblies and linkage maps of the critically endangered Atlantic acroporids, Acropora palmata and A.
The software program STRUCTURE is one of the most cited tools for determining population structure. To infer the optimal number of clusters from STRUCTURE output, the ΔK method is often applied. However, a recent study relying on simulated microsatellite data suggested that this method has a downward bias in its estimation of K and is sensitive to uneven sampling.
View Article and Find Full Text PDFMutualisms where hosts are coupled metabolically to their symbionts often exhibit high partner fidelity. Most reef-building coral species form obligate symbioses with a specific species of photosymbionts, dinoflagellates in the family Symbiodiniaceae, despite needing to acquire symbionts early in their development from environmental sources. Three Caribbean acroporids (Acropora palmata, A.
View Article and Find Full Text PDF