Publications by authors named "Kathryn H Driesbaugh"

Testisin (encoded by PRSS21) is a membrane anchored serine protease, which is tethered to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor. While testisin is found in abundance in spermatozoa, it is also expressed in microvascular endothelial cells where its function is unknown. Here we identify testisin as a novel regulator of physiological hormone-induced angiogenesis and microvascular endothelial permeability.

View Article and Find Full Text PDF

Aims: Mitral valve interstitial cells (MVIC) play an important role in the pathogenesis of degenerative mitral regurgitation (MR) due to mitral valve prolapse (MVP). Numerous clinical studies have observed serotonin (5HT) dysregulation in cardiac valvulopathies; however, the impact of 5HT-mediated signaling on MVIC activation and leaflet remodeling in MVP have been investigated to a limited extent. Here we test the hypothesis that 5HT receptors (5HTRs) signaling contributes to MVP pathophysiology.

View Article and Find Full Text PDF

Mechanical stress is one of the major aetiological factors underlying soft-tissue remodelling, especially for the mitral valve (MV). It has been hypothesized that altered MV tissue stress states lead to deviations from cellular homeostasis, resulting in subsequent cellular activation and extracellular matrix (ECM) remodelling. However, a quantitative link between alterations in the organ-level state and based mechanobiology studies has yet to be made.

View Article and Find Full Text PDF

The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent.

View Article and Find Full Text PDF

Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation.

View Article and Find Full Text PDF

SerpinB2, a member of the serine protease inhibitor family, is expressed by macrophages and is significantly upregulated by inflammation. Recent studies implicated a role for SerpinB2 in the control of Th1 and Th2 immune responses, but the mechanisms of these effects are unknown. In this study, we used mice deficient in SerpinB2 (SerpinB2(-/-)) to investigate its role in the host response to the enteric nematode, Heligmosomoides bakeri.

View Article and Find Full Text PDF

The type II transmembrane serine protease matriptase is a key regulator of epithelial barriers in skin and intestine. In skin, matriptase acts upstream of the glycosylphosphatidylinositol-anchored serine protease, prostasin, to activate the prostasin zymogen and initiate a proteolytic cascade that is required for stratum corneum barrier functionality. Here, we have investigated the relationship between prostasin and matriptase in intestinal epithelial barrier function.

View Article and Find Full Text PDF