Publications by authors named "Kathryn E Snell"

Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post-depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturation in situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δO, δC, and Δ values of lacustrine carbonate is not fully known.

View Article and Find Full Text PDF

The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO record spanning the past 66 million years.

View Article and Find Full Text PDF

Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g.

View Article and Find Full Text PDF

Rationale: Soil water stable isotopes are a powerful tool for tracking interactions among the hydrosphere, geosphere, atmosphere, and biosphere. The challenges associated with creating high-temporal-resolution soil water stable isotope datasets from a diversity of sites have limited the utility of stable isotope geochemistry in addressing a range of complex problems. A device that can enable further development of high-temporal-resolution soil water isotope datasets that are created with minimal soil profile disruption from remote sites would greatly expand the utility of soil water stable isotope analyses.

View Article and Find Full Text PDF