J Clin Transl Endocrinol
June 2024
Cystic fibrosis (CF) has been traditionally viewed as a disease that affects White individuals. However, CF occurs among all races, ethnicities, and geographic ancestries. The disorder results from mutations in the ().
View Article and Find Full Text PDFVariants in the cystic fibrosis transmembrane conductance regulator gene (CFTR) result in cystic fibrosis-a lethal autosomal recessive disorder. Missense variants that alter a single amino acid in the CFTR protein are among the most common cystic fibrosis variants, yet tools for accurately predicting molecular consequences of missense variants have been limited to date. AlphaMissense (AM) is a new technology that predicts the pathogenicity of missense variants based on dual learned protein structure and evolutionary features.
View Article and Find Full Text PDFVariants in the cystic fibrosis transmembrane conductance regulator gene () result in cystic fibrosis - a lethal autosomal recessive disorder. Missense variants that alter a single amino acid in the CFTR protein are among the most common cystic fibrosis variants, yet tools for accurately predicting molecular consequences of missense variants have been limited to date. AlphaMissense (AM) is a new technology that predicts the pathogenicity of missense variants based on dual learned protein structure and evolutionary features.
View Article and Find Full Text PDFIntroduction: Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies.
View Article and Find Full Text PDFCystic fibrosis (CF) is caused by mutations that compromise the expression and/or function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Most people with CF harbor a common misfolded variant (ΔF508) that can be partially rescued by therapeutic "correctors" that restore its expression. Nevertheless, many other CF variants are insensitive to correctors.
View Article and Find Full Text PDFCystic fibrosis (CF) is an autosomal recessive disease impacting ∼100,000 people worldwide. This lethal disorder is caused by mutation of the gene, which encodes an ATP-binding cassette-class C protein. More than 2,100 variants have been identified throughout the length of .
View Article and Find Full Text PDFPatients with cystic fibrosis (CF) harboring the P67L variant in the cystic fibrosis transmembrane conductance regulator (CFTR) often exhibit a typical CF phenotype, including severe respiratory compromise. This rare mutation (reported in <300 patients worldwide) responds robustly to CFTR correctors, such as lumacaftor and tezacaftor, with rescue in model systems that far exceed what can be achieved for the archetypical CFTR mutant F508del. However, the specific molecular consequences of the P67L mutation are poorly characterized.
View Article and Find Full Text PDFEpistasis refers to the dependence of a mutation on other mutation(s) and the genetic context in general. In the context of human disorders, epistasis complicates the spectrum of disease symptoms and has been proposed as a major contributor to variations in disease outcome. The nonadditive relationship between mutations and the lack of complete understanding of the underlying physiological effects limit our ability to predict phenotypic outcome.
View Article and Find Full Text PDFBackground: Chronic inflammation is a hallmark among patients with cystic fibrosis (CF). We explored whether mutation-induced (F508del) misfolding of the cystic fibrosis transmembrane conductance regulator (CFTR), and/or secondary colonization with opportunistic pathogens, activate tissue remodeling and innate immune response drivers.
Methods: Using RNA-seq to interrogate global gene expression profiles, we analyzed stress response signaling cascades in primary human bronchial epithelia (HBE) and intestinal organoids.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity.
View Article and Find Full Text PDFBackground: By definition, effect of synonymous single-nucleotide variants (SNVs) on protein folding and function are neutral, as they alter the codon and not the encoded amino acid. Recent examples indicate tissue-specific and transfer RNA (tRNA)-dependent effects of some genetic variations arguing against neutrality of synonymous SNVs for protein biogenesis.
Results: We performed systematic analysis of tRNA abunandance across in various models used in cystic fibrosis (CF) research and drug development, including Fischer rat thyroid (FRT) cells, patient-derived primary human bronchial epithelia (HBE) from lung biopsies, primary human nasal epithelia (HNE) from nasal curettage, intestinal organoids, and airway progenitor-directed differentiation of human induced pluripotent stem cells (iPSCs).
With over 1900 variants reported in the cystic fibrosis transmembrane conductance regulator (CFTR), enhanced understanding of cystic fibrosis (CF) genotype-phenotype correlation represents an important and expanding area of research. The potentiator Ivacaftor has proven an effective treatment for a subset of individuals carrying missense variants, particularly those that impact CFTR gating. Therapeutic efforts have recently focused on correcting the basic defect resulting from the common F508del variant, as well as many less frequent missense alleles.
View Article and Find Full Text PDFCan J Microbiol
September 2013
Chronic Pseudomonas aeruginosa infections remain the leading cause of lung dysfunction and mortality for cystic fibrosis (CF) patients. Many other bacteria inhabit the CF lung, but P. aeruginosa utilizes novel strategies that allow it to colonize this environment as the predominant bacterial pathogen.
View Article and Find Full Text PDF