Publications by authors named "Kathryn Doiron"

Background: Alcohol consumption is a major cause of liver disease in humans. The use and monitoring of biomarkers associated with early, pre-clinical stages of alcohol-induced liver disease (pre-ALD) could facilitate diagnosis and treatment, leading to improved outcomes.

Methods: We investigated the pathological, transcriptomic and protein changes in early stages of pre-ALD in mice fed the Lieber-Decarli liquid diet with or without alcohol for four months to identify biomarkers for the early stage of alcohol induced liver injury.

View Article and Find Full Text PDF

Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body γ-radiation.

View Article and Find Full Text PDF

ON 01210.Na (Ex-RAD), a chlorobenzylsulfone derivative was investigated for its pharmacologic and radioprotective properties when administered via oral and subcutaneous (SC) routes. The goals of the study were to assess the comparative bioavailability of ON 01210.

View Article and Find Full Text PDF

Purpose: There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater.

Methods: C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival.

View Article and Find Full Text PDF

Carcinogenesis induced by space radiation is considered a major risk factor in manned interplanetary and other extended missions. The models presently used to estimate the risk for cancer induction following deep space radiation exposure are based on data from A-bomb survivor cohorts and do not account for important biological differences existing between high-linear energy transfer (LET) and low-LET-induced DNA damage. High-energy and charge (HZE) radiation, the main component of galactic cosmic rays (GCR), causes highly complex DNA damage compared to low-LET radiation, which may lead to increased frequency of chromosomal rearrangements, and contribute to carcinogenic risk in astronauts.

View Article and Find Full Text PDF

The cascade of Alzheimer's disease (AD) neurodegeneration is associated with persistent oxidative stress, mitochondrial dysfunction, impaired energy metabolism, and activation of pro-death signaling pathways. More recently, studies with human postmortem brain tissue linked many of the characteristic molecular and pathological features of AD to reduced expression of the insulin and insulin-like growth factor (IGF) genes and their corresponding receptors. We now demonstrate using an in vivo model of intracerebral Streptozotocin (ic-STZ), that chemical depletion of insulin and IGF signaling mechanisms combined with oxidative injury is sufficient to cause AD-type neurodegeneration.

View Article and Find Full Text PDF

Transgenic expression of gastrin and EGF receptor ligands stimulates islet neogenesis in adult mice, significantly increasing islet mass. The present study aimed to determine whether pharmacological treatment with gastrin and EGF can significantly stimulate beta-cell regeneration in chronic, severe insulin-dependent diabetes. Diabetes was induced by intravenous streptozotocin, resulting in >95% beta cell destruction.

View Article and Find Full Text PDF