Publications by authors named "Kathryn D Feller"

Though the transparent apposition eyes of larval stomatopod crustaceans lack most of the unique retinal specializations known from their adult counterparts, increasing evidence suggests that these tiny pelagic organisms possess their own version of retinal complexity. In this paper, we examined the structural organization of larval eyes in six species of stomatopod crustaceans across three stomatopod superfamilies using transmission electron microscopy. The primary focus was to examine retinular cell arrangement of the larval eyes and characterize the presence of an eighth retinular cell (R8), which is typically responsible for UV vision in crustaceans.

View Article and Find Full Text PDF

The relationship between genotype and phenotype is non-trivial because of the often complex molecular pathways that make it difficult to unambiguously relate phenotypes to specific genotypes. Photopigments, comprising an opsin apoprotein bound to a light-absorbing chromophore, present an opportunity to directly relate the amino acid sequence to an absorbance peak phenotype (λmax). We examined this relationship by conducting a series of site-directed mutagenesis experiments of retinochrome, a non-visual opsin, from two closely related species: the common bay scallop, Argopecten irradians, and the king scallop, Pecten maximus.

View Article and Find Full Text PDF

Motor behavior results in complex exchanges of motor and sensory information across cortical regions. Therefore, fully understanding the cerebral cortex's role in motor behavior requires a mesoscopic-level description of the cortical regions engaged, their functional interactions, and how these functional interactions change with behavioral state. Mesoscopic Ca2+ imaging through transparent polymer skulls in mice reveals elevated activation of the dorsal cerebral cortex during locomotion.

View Article and Find Full Text PDF

Eyes have the flexibility to evolve to meet the ecological demands of their users. Relative to camera-type eyes, the fundamental limits of optical diffraction in arthropod compound eyes restrict the ability to resolve fine detail (visual acuity) to much lower degrees. We tested the capacity of several ecological factors to predict arthropod visual acuity, while simultaneously controlling for shared phylogenetic history.

View Article and Find Full Text PDF

Stomatopods (Crustacea, Stomatopoda) are well studied for their aggressive behavior and unique visual system as well as their commercial importance in Asian and European countries. Like many crustaceans, stomatopods undergo indirect development, passing though several larval stages before reaching maturity. Adult stomatopods can be difficult to catch due to their inaccessible habitats and cryptic coloration.

View Article and Find Full Text PDF

Mantis shrimp strikes are one of the fastest animal movements, despite their occurrence in a water medium with viscous drag. Since the strike is produced by a latch-mediated spring-actuated system and not directly driven by muscle action, we predicted that strikes performed in air would be faster than underwater as a result of reduction in the medium's drag. Using high-speed video analysis of stereotyped strikes elicited from , we found the exact opposite: strikes are much slower and less powerful in air than in water.

View Article and Find Full Text PDF

Both vertebrates and invertebrates commonly exploit photonic structures adjacent to their photoreceptors for visual benefits. For example, use of a reflecting structure (tapetum) behind the retina increases photon capture, enhancing vision in dim light [1-5]. Colored filters positioned lateral or distal to a photoreceptive unit may also be used to tune spectral sensitivity by selective transmission of wavelengths not absorbed or scattered by the filters [6-8].

View Article and Find Full Text PDF
Article Synopsis
  • * A laboratory exercise is proposed for studying the electrophysiology of these power-amplified movements, focusing specifically on mantis shrimp strikes but applicable to other species like crickets and cockroaches.
  • * Students gain hands-on experience with animal handling, EMG probe implantation, and data analysis, learning about muscle control, behavior, and the concept of convergent evolution through their experiments.
View Article and Find Full Text PDF

Many animals use structural coloration to create bright and conspicuous visual signals. Selection of the size and shape of the optical structures animals use defines both the colour and intensity of the light reflected. The material used to create these reflectors is also important; however, animals are restricted to a limited number of materials: commonly chitin, guanine and the protein, reflectin.

View Article and Find Full Text PDF

Studies of the diversity of Philippine amphibians and reptiles have resulted in the continued description of cryptic species. Species formerly thought to range across multiple recognized faunal regions are now considered to be assemblages of multiple unique species, each restricted to a single faunal region. This pattern continues to hold true when considering Philippine skinks of the genus Brachymeles.

View Article and Find Full Text PDF

A new species of slender skink is described from the Philippines. The species is endemic to Lubang Island, and is assigned to the Brachymeles bonitae Complex based on phenotypic and genetic data. Specimens were collected from Lubang Island between 1991 and 2012, and were examined based on morphological data (qualitative traits, meristic counts, and mensural measurements).

View Article and Find Full Text PDF

Many biophotonic structures have their spectral properties of reflection 'tuned' using the (zeroth-order) Bragg criteria for phase constructive interference. This is associated with a periodicity, or distribution of periodicities, parallel to the direction of illumination. The polarization properties of these reflections are, however, typically constrained by the dimensional symmetry and intrinsic dielectric properties of the biological materials.

View Article and Find Full Text PDF

Larval stomatopod eyes appear to be much simpler versions of adult compound eyes, lacking most of the visual pigment diversity and photoreceptor specializations. Our understanding of the visual pigment diversity of larval stomatopods, however, is based on four species, which severely limits our understanding of stomatopod eye ontogeny. To investigate several poorly understood aspects of stomatopod larval eye function, we tested two hypotheses surrounding the spectral absorption of larval visual pigments.

View Article and Find Full Text PDF

Stomatopod eye development is unusual among crustaceans. Just prior to metamorphosis, an adult retina and associated neuro-processing structures emerge adjacent to the existing material in the larval compound eye. Depending on the species, the duration of this double-retina eye can range from a few hours to several days.

View Article and Find Full Text PDF

The polarization of light provides information that is used by many animals for a number of different visually guided behaviours. Several marine species, such as stomatopod crustaceans and cephalopod molluscs, communicate using visual signals that contain polarized information, content that is often part of a more complex multi-dimensional visual signal. In this work, we investigate the evolution of polarized signals in species of Haptosquilla, a widespread genus of stomatopod, as well as related protosquillids.

View Article and Find Full Text PDF

Alima pacifica and A. orientalis are stomatopods commonly found at Lizard Island, Great Barrier Reef, Australia. There are currently no descriptions that link the larvae to the adult morphotype despite the frequent occurrence of the last larval stage of these two species.

View Article and Find Full Text PDF