Publications by authors named "Kathryn C Partlow"

Apoptosis is generally believed to be a process that requires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed.

View Article and Find Full Text PDF

The poly(ADP-ribose) (PAR) post-translational modification is essential for diverse cellular functions, including regulation of transcription, response to DNA damage, and mitosis. Cellular PAR is predominantly synthesized by the enzyme poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is a critical node in the DNA damage response pathway, and multiple potent PARP-1 inhibitors have been described, some of which show considerable promise in the clinic for the treatment of certain cancers.

View Article and Find Full Text PDF

The ability to specifically deliver therapeutic agents to selected cell types while minimizing systemic toxicity is a principal goal of nanoparticle-based drug delivery approaches. Numerous cellular portals exist for cargo uptake and transport, but after targeting, intact nanoparticles typically are internalized via endocytosis prior to drug release. However, in this work, we show that certain classes of nanoparticles, namely lipid-coated liquid perfluorocarbon emulsions, undergo unique interactions with cells to deliver lipophilic substances to target cells without the need for entire nanoparticle internalization.

View Article and Find Full Text PDF

Targeted, liquid perfluorocarbon nanoparticles are effective agents for acoustic contrast enhancement of abundant cellular epitopes (e.g., fibrin in thrombi) and for lower prevalence binding sites, such as integrins associated with tumor neovasculature.

View Article and Find Full Text PDF

MRI has been employed to elucidate the migratory behavior of stem/progenitor cells noninvasively in vivo with traditional proton (1H) imaging of iron oxide nanoparticle-labeled cells. Alternatively, we demonstrate that fluorine (19F) MRI of cells labeled with different types of liquid perfluorocarbon (PFC) nanoparticles produces unique and sensitive cell markers distinct from any tissue background signal. To define the utility for cell tracking, mononuclear cells harvested from human umbilical cord blood were grown under proendothelial conditions and labeled with nanoparticles composed of two distinct PFC cores (perfluorooctylbromide and perfluoro-15-crown-5 ether).

View Article and Find Full Text PDF

Earlier tumor detection can improve 5-year survival of patients, particularly among those presenting with cancers less than 1 cm in diameter. alpha(nu)beta(3)-Targeted (111)In nanoparticles (NP) were developed and studied for detection of tumor angiogenesis. Studies were conducted in New Zealand white rabbits implanted 12 days earlier with Vx-2 tumor.

View Article and Find Full Text PDF