Individual fluorescently labeled fibrin(ogen) molecules and their assembly to make a clot were observed by total internal reflection fluorescence microscopy (TIRFM). We used the bleaching of the fluorescent labels to determine the number of active fluorophores attached nonspecifically to each molecule. From the total intensity of bleaching steps, as single-molecule signature events, and the distribution of active labeling, we developed a new single-molecule intensity calibration, which accounts for all molecules, including those “not seen.
View Article and Find Full Text PDFStudies in animal models have shown that plasminogen activators bound to erythrocytes (RBC-PA) have an extended lifetime in the circulation and are safer than free PAs. RBC-PAs incorporate into nascent thrombi, which are focally lysed from within, an attractive thromboprophylactic option. In static systems, RBC-PAs cleave surrounding fibrin fibers, forming pores larger than the cells themselves, and move around the pore edges, enlarging them until eventual clot dissolution.
View Article and Find Full Text PDFAlthough many in vitro fibrin studies are performed with plasma, in vivo clots and thrombi contain erythrocytes, or red blood cells (RBCs). To determine the effects of RBCs on fibrin clot structure and mechanical properties, we compared plasma clots without RBCs to those prepared with low (2 vol%), intermediate (5-10 vol%), or high (> or =20 vol%) numbers of RBCs. By confocal microscopy, we found that low RBC concentrations had little effect on clot structure.
View Article and Find Full Text PDFIntroduction: A fraction of fibrinogen molecules contain an alternatively spliced variant chain called gamma'. Plasma levels of this variant have been associated with both myocardial infarction and venous thrombosis. Because clot structure has been associated with cardiovascular risk, we examined the effect of gamma' chain on clot structure.
View Article and Find Full Text PDF