This study investigated optimization settings that steepen the dose gradient as a function of target size for lung stereotactic body radiation therapy (SBRT). Sixty-eight lung SBRT patients with planning target volumes (PTVs) ranging from 2-203 cc were categorized into small (<20 cc), medium (20-50 cc), and large (>50 cc) groups. VMAT plans were generated using the normal tissue objective (NTO) to penalize the dose gradient at progressively steeper NTO fall-off values (0.
View Article and Find Full Text PDFThis study investigated a straightforward treatment planning technique for definitive stereotactic body radiation therapy (SBRT) for patients with early-stage lung cancer aimed at increasing dose to gross disease by strategically penalizing the normal tissue objective (NTO) in the Eclipse treatment planning system. Twenty-five SBRT cases were replanned to 50 Gy in 5 fractions using static and dynamic NTO methods (50 plans total). The NTO had a start dose of 100% at the target border, end dose of 20%, fall-off rate of 0.
View Article and Find Full Text PDF