Publications by authors named "Kathryn Beheshti"

Article Synopsis
  • Tidal wetlands can absorb greenhouse gases, but methane emissions can vary due to environmental factors and human activities.
  • Land managers require detailed maps of methane properties in these wetlands for effective restoration and greenhouse gas inventories, yet current sampling methods don't align well with broader mapping products.
  • Research involved sampling 27 tidal wetlands, revealing that sulfate concentration is the strongest predictor of methane levels, while salinity also plays a significant role; future studies should focus on understanding local environmental influences on methane variation.
View Article and Find Full Text PDF

The success and cost-effectiveness of kelp forest restoration hinges on understanding the colonization ecology of kelps, particularly with respect to dispersal potential, recruitment success, and subsequent establishment. To gain needed insight into these processes we examined spatial patterns and temporal trajectories of the colonization of a large artificial reef by the giant kelp Macrocystis pyrifera. The 151 ha artificial reef complex was constructed in three phases over 21 years, enabling dispersal, recruitment, and subsequent establishment to be examined for a wide range of environmental conditions, dispersal distances, and source population sizes.

View Article and Find Full Text PDF

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology, but the evidence for this remains correlational and intensely debated. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour).

View Article and Find Full Text PDF

Salt marsh loss is projected to increase as sea-level rise accelerates with global climate change. Salt marsh loss occurs along both lateral creek and channel edges and in the marsh interior, when pannes expand and coalesce. Often, edge loss is attributed to erosive processes whereas dieback in the marsh interior is linked to excessive inundation or deposition of wrack, but remains poorly understood.

View Article and Find Full Text PDF

The global decline of marine foundation species (kelp forests, mangroves, salt marshes, and seagrasses) has contributed to the degradation of the coastal zone and threatens the loss of critical ecosystem services and functions. Restoration of marine foundation species has had variable success, especially for seagrasses, where a majority of restoration efforts have failed. While most seagrass restorations track structural attributes over time, rarely do restorations assess the suite of ecological functions that may be affected by restoration.

View Article and Find Full Text PDF

The generality of ecological patterns depends inextricably on the scale at which they are examined. We investigated patterns of crab distribution and the relationship between crabs and vegetation in salt marshes at multiple scales. By using consistent monitoring protocols across 15 U.

View Article and Find Full Text PDF