Publications by authors named "Kathryn Akong"

fibrosis is a genetic disease characterized by chronic lung infection, often with Pseudomonas aeruginosa, requiring repeated antibiotic treatment for pulmonary exacerbations. In the era of cystic fibrosis transmembrane conductance regulator modulator therapy, we assessed susceptibility to antipseudomonal antibiotics in modulator-eligible and modulator-ineligible children over 3 years and found that P. aeruginosa isolates largely remained susceptible to standard parenteral but not oral antimicrobial agents.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) is a genetic disease associated with lung disease characterized by chronic pulmonary infection, increasingly caused by multiple drug-resistant pathogens after repeated antibiotic exposure, limiting antibiotic treatment options. Bacteriophages can provide a pathogen-specific bactericidal treatment used with antibiotics to improve microbiologic and clinical outcomes in CF.

Methods: Achromobacter species isolates from sputum of a chronically infected person with CF, were assessed for susceptibility to bacteriophages: 2 highly active, purified bacteriophages were administered intravenously every 8 hours, in conjunction with a 14-day piperacillin/tazobactam course for CF exacerbation.

View Article and Find Full Text PDF
Article Synopsis
  • There is significant debate over whether to include race in spirometry reference equations, especially for children's lung function, which is crucial for diagnosing respiratory illnesses like asthma.
  • Racial bias in lung function assessment is a concern given that racial/ethnic minorities face a higher burden of respiratory diseases.
  • The authors argue against using race-specific equations due to their limited and biased reference populations and emphasize the need to explore environmental factors that impact lung development instead.
View Article and Find Full Text PDF

The primary defect in cystic fibrosis (CF) is abnormal chloride and bicarbonate transport in the cystic fibrosis transmembrane conductance regulator (CFTR) epithelial ion channel. The apical surface of the respiratory tract is lined by an airway surface liquid layer (ASL) composed of mucin comprising mainly MUC5A and MUC5B glycoproteins. ASL homeostasis depends on sodium bicarbonate secretion into the airways and secretion deficits alter mucus properties leading to airway obstruction, inflammation, and infections.

View Article and Find Full Text PDF

Background: Asthma is the most common pediatric chronic disease; thus, clinical guidelines have been developed for its assessment and management, which rely on systematic symptom documentation. Electronic health records (EHR) have the potential to record clinical data systematically; however, variability in documentation persists.

Objective: To identify if the use of a structured asthma template is associated with increased guideline-based asthma documentation and clinical outcomes when compared with the use of nonstructured ones.

View Article and Find Full Text PDF

Exocrine pancreatic insufficiency (EPI), which leads to malabsorption and poor weight gain, is seen in 85% of patients with cystic fibrosis (CF). EPI is treated with pancreatic enzyme replacement therapy taken with each meal. The highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator, ivacaftor, restores CFTR function in patients with responsive mutations.

View Article and Find Full Text PDF

Unlabelled: Hypoxia-inducible factor (HIF)-1α is a master regulator of inflammation and is upregulated in alveolar macrophages and lung parenchyma in asthma. HIF-1α regulates select pathways in allergic inflammation, and thus may drive particular asthma phenotypes. This work examines the role of pharmacologic HIF-1α inhibition in allergic inflammatory airway disease (AIAD) pathogenesis in BALB/c mice, which develop an airway hyperresponsiveness (AHR) asthma phenotype.

View Article and Find Full Text PDF

The highly polarized architecture of neurons is important for their function. Experimental data based on dominant-negative approaches suggest that the tumor suppressor adenomatous polyposis coli (APC), a regulator of Wnt signaling and the cytoskeleton, regulates polarity of neuroectodermal precursors and neurons, helping specify one neurite as the axon, promoting its outgrowth, and guiding axon pathfinding. However, such dominant-negative approaches might affect processes in which APC is not essential.

View Article and Find Full Text PDF

Construction of the brain is one of the most complex developmental challenges. Wnt signals shape all tissues, including the brain, and the tumor suppressor adenomatous polyposis coli (APC) is a key negative regulator of Wnt/Wingless (Wg) signaling. We carried out the first assessment of the role of APC proteins in brain development, simultaneously inactivating both APC1 and APC2 in clones of cells in the Drosophila larval optic lobe.

View Article and Find Full Text PDF

The regulation of signal transduction plays a key role in cell fate choices, and its disregulation contributes to oncogenesis. This duality is exemplified by the tumor suppressor APC. Originally identified for its role in colon tumors, APC family members were subsequently shown to negatively regulate Wnt signaling in both development and disease.

View Article and Find Full Text PDF

The tumor suppressor APC and its homologs, first identified for a role in colon cancer, negatively regulate Wnt signaling in both oncogenesis and normal development, and play Wnt-independent roles in cytoskeletal regulation. Both Drosophila and mammals have two APC family members. We further explored the functions of the Drosophila APCs using the larval brain as a model.

View Article and Find Full Text PDF