Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) on cell survival, neurite outgrowth and voltage-dependent calcium currents in developing rat ventral mesencephalic (VM) neurons. Both BuChE and AChE have been shown to promote neurite outgrowth in postnatnal preparations. However, the effect of these substances has never been investigated on rat embryonic VM cells, which are used in animal models of foetal transplantation as a treatment for Parkinson's disease.
View Article and Find Full Text PDFBrain Res Dev Brain Res
December 2002
The diversity of expression of high-voltage activated voltage-dependent calcium channels (VDCC) was investigated with whole-cell voltage-clamp recordings from dissociated embryonic rat ventral mesencephalic cells over a 7-day culture period. Cell phenotype was identified post-recording by fluorescent immunocytochemistry as tyrosine hydroxylase positive (TH+) or glutamic acid decarboxylase positive (GAD+). Both TH+ and GAD+ cells displayed high-threshold calcium (Ca(2+)) currents activated by depolarisations positive to -60 mV.
View Article and Find Full Text PDF