Publications by authors named "Kathrin Weiland"

Organic polymer-based composite materials with favorable mechanical performance and functionalities are keystones to various modern industries; however, the environmental pollution stemming from their processing poses a great challenge. In this study, by finding an autonomous phase separating ability of fungal mycelium, a new material fabrication approach is introduced that leverages such biological metabolism-driven, mycelial growth-induced phase separation to bypass high-energy cost and labor-intensive synthetic methods. The resulting self-regenerative composites, featuring an entangled network structure of mycelium and assembled organic polymers, exhibit remarkable self-healing properties, being capable of reversing complete separation and restoring ≈90% of the original strength.

View Article and Find Full Text PDF

The availability of freshwater is rapidly declining due to over-exploitation and climate change, with multiple parts of the globe already facing significant freshwater scarcity. Here, a sulfonated hypercrosslinked polymer able to repeatedly harvest significant amounts of water via direct air capture is reported. Water uptake from relative humidities as low as 10% is demonstrated, mimicking some of the harshest environments on Earth.

View Article and Find Full Text PDF

Nanofibrillated cellulose (NFC) has key applications in composites, water filters and as emulsifiers. The affinity of NFC to water is a challenge, as it negatively influences its integrity. Lignin, a major component of plant biomass, is a natural hydrophobiser.

View Article and Find Full Text PDF

Due to its unique properties, nano fibrillated cellulose (NFC) has been a popular topic of research in recent years. Nevertheless, literature assessing environmental impacts of NFC production is scarce, especially for using other starting materials than wood pulp. Hence, in this study, a new approach of cascaded use of manure to produce biogas and subsequently use the cellulose containing digestate for NFC production (manure scenario) is compared to the production from Kraft pulp from hardwood chips (wood chips scenario) via life cycle assessment (LCA).

View Article and Find Full Text PDF

Mycelium, the vegetative growth of filamentous fungi, has attracted increasing commercial and academic interest in recent years because of its ability to upcycle agricultural and industrial wastes into low-cost, sustainable composite materials. However, mycelium composites typically exhibit foam-like mechanical properties, primarily originating from their weak organic filler constituents. Fungal growth can be alternatively utilized as a low-cost method for on-demand generation of natural nanofibrils, such as chitin and chitosan, which can be grown and isolated from liquid wastes and byproducts in the form of fungal microfilaments.

View Article and Find Full Text PDF