Publications by authors named "Kathrin Preuss"

A hard templating method, using SBA-15 in combination with glucose solution and different heteroatom precursors, has been employed to investigate the influence of the different heteroatom dopants nitrogen, boron, sulfur, and phosphorus on carbon electrocatalysts for the oxygen reduction reaction. Samples were synthesized under the same conditions and resulted in a similar morphology and surface areas around 1000 m /g. Incorporating nitrogen into the carbon matrix was found to be easier than for boron or phosphorus, while sulfur doping proved problematic and only yielded 2 at% of sulfur or less.

View Article and Find Full Text PDF

Dye sensitized solar cells have emerged as an attractive alternative to conventional solar cells due to their easy processing and the abundance and low cost of their materials. However, the counter electrode in these cells employs platinum which significantly impacts their cost. Here, we report biomass-derived, nitrogen-doped carbon aerogel as an effective alternative to conventional platinum-based counter electrodes for dye sensitized solar cells.

View Article and Find Full Text PDF

Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density.

View Article and Find Full Text PDF

We propose a new synthetic route towards nanoporous functional carbon materials based on salt templating with pore-padding approach (STPP). STPP relies on the use of a pore-padding agent that undergoes an initial polymerisation/ condensation process prior to the formation of a solid carbon framework. The pore-padding agent allows tailoring hierarchically the pore-size distribution and controlling the amount of heteroatom (nitrogen in this case) functionalities as well as the type of nitrogen (graphitic, pyridinic, oxides of nitrogen) incorporated within the carbon framework in a single-step-process.

View Article and Find Full Text PDF

High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.

View Article and Find Full Text PDF