Publications by authors named "Kathrin Padberg-Gehle"

We study finite-time mixing in time-periodic open flow systems. We describe the transport of densities in terms of a transfer operator, which is represented by the transition matrix of a finite-state Markov chain. The transport processes in the open system are organized by the chaotic saddle and its stable and unstable manifolds.

View Article and Find Full Text PDF

We explore the transport mechanisms of heat in two- and three-dimensional turbulent convection flows by means of the long-term evolution of Lagrangian coherent sets. They are obtained from the spectral clustering of trajectories of massless fluid tracers that are advected in the flow. Coherent sets result from trajectories that stay closely together under the dynamics of the turbulent flow.

View Article and Find Full Text PDF

Coherent circulation rolls and their relevance for the turbulent heat transfer in a two-dimensional Rayleigh-Bénard convection model are analyzed. The flow is in a closed cell of aspect ratio four at a Rayleigh number Ra=10^{6} and at a Prandtl number Pr=10. Three different Lagrangian analysis techniques based on graph Laplacians (distance spectral trajectory clustering, time-averaged diffusion maps, and finite-element based dynamic Laplacian discretization) are used to monitor the turbulent fields along trajectories of massless Lagrangian particles in the evolving turbulent convection flow.

View Article and Find Full Text PDF

Transport and mixing processes in fluid flows can be studied directly from Lagrangian trajectory data, such as those obtained from particle tracking experiments. Recent work in this context highlights the application of graph-based approaches, where trajectories serve as nodes and some similarity or distance measure between them is employed to build a (possibly weighted) network, which is then analyzed using spectral methods. Here, we consider the simplest case of an unweighted, undirected network and analytically relate local network measures such as node degree or clustering coefficient to flow structures.

View Article and Find Full Text PDF

The dynamics in the thin boundary layers of temperature and velocity is the key to a deeper understanding of turbulent transport of heat and momentum in thermal convection. The velocity gradient at the hot and cold plates of a Rayleigh-Bénard convection cell forms the two-dimensional skin friction field and is related to the formation of thermal plumes in the respective boundary layers. Our analysis is based on a direct numerical simulation of Rayleigh-Bénard convection in a closed cylindrical cell of aspect ratio Γ=1 and focused on the critical points of the skin friction field.

View Article and Find Full Text PDF

We present a numerical method to identify regions of phase space that are approximately retained in a mobile compact neighbourhood over a finite time duration. Our approach is based on spatio-temporal clustering of trajectory data. The main advantages of the approach are the ability to produce useful results (i) when there are relatively few trajectories and (ii) when there are gaps in observation of the trajectories as can occur with real data.

View Article and Find Full Text PDF

The unsteady (nonautonomous) analog of a hyperbolic fixed point is a hyperbolic trajectory, whose importance is underscored by its attached stable and unstable manifolds, which have relevance in fluid flow barriers, chaotic basin boundaries, and the long-term behavior of the system. We develop a method for obtaining the unsteady control velocity which forces a hyperbolic trajectory to follow a user-prescribed variation with time. Our method is applicable in any dimension, and accuracy to any order is achievable.

View Article and Find Full Text PDF

Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay.

View Article and Find Full Text PDF