Publications by authors named "Kathrin Mutze"

Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.

View Article and Find Full Text PDF

Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling pathways.

View Article and Find Full Text PDF

The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) and lung cancer are progressive lung diseases with a poor prognosis. IPF is a risk factor for the development of lung cancer, and the incidence of lung cancer is increased in patients with IPF. The disease pathogenesis of IPF and lung cancer involves common genetic alterations, dysregulated pathways, and the emergence of hyperplastic and metaplastic epithelial cells.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Repetitive injury and reprogramming of the lung epithelium are thought to be critical drivers of disease progression, contributing to fibroblast activation, extracellular matrix remodeling, and subsequently loss of lung architecture and function. To date, Pirfenidone and Nintedanib are the only approved drugs known to decelerate disease progression, however, if and how these drugs affect lung epithelial cell function, remains largely unexplored.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with limited therapeutic options and unknown etiology. IPF is characterized by epithelial cell injury, impaired cellular crosstalk between epithelial cells and fibroblasts, and the formation of fibroblast foci with increased extracellular matrix deposition (ECM). We investigated the role of runt-related transcription factor 2 (RUNX2), a master regulator of bone development that has been linked to profibrotic signaling.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair.

View Article and Find Full Text PDF

Rationale: Chronic obstructive pulmonary disease (COPD), in particular emphysema, is characterized by loss of parenchymal alveolar tissue and impaired tissue repair. Wingless and INT-1 (WNT)/β-catenin signaling is reduced in COPD; however, the mechanisms thereof, specifically the role of the frizzled (FZD) family of WNT receptors, remain unexplored.

Objectives: To identify and functionally characterize specific FZD receptors that control downstream WNT signaling in impaired lung repair in COPD.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated.

View Article and Find Full Text PDF

Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract.

View Article and Find Full Text PDF

Background: Carbonaceous nanoparticles (CNP) represent a major constituent of urban particulate air pollution, and inhalation of high CNP levels has been described to trigger a pro-inflammatory response of the lung. While several studies identified specific particle characteristics driving respiratory toxicity of low-solubility and low-toxicity particles such as CNP, the major lung cell type, which initiates and drives that response, remains still uncertain. Since alveolar macrophages (AM) are known to effectively phagocytose inhaled particles and play a crucial role for the initiation of pulmonary inflammation caused by invading microbes, we aimed to determine their role for sterile stimuli such as CNP by profiling the primary alveolar cell compartments of the lung.

View Article and Find Full Text PDF

To date, phenotyping and disease course prediction in idiopathic pulmonary fibrosis (IPF) primarily relies on lung function measures. Blood biomarkers were recently proposed for diagnostic and outcome prediction in IPF, yet their correlation with lung function and histology remains unclear. Here, we comprehensively assessed biomarkers in liquid biopsies and correlated their abundance with lung function and histology during the onset, progression, and resolution of lung fibrosis, with the aim to more precisely evaluate disease progression in the preclinical model of bleomycin-induced pulmonary fibrosis in vivo.

View Article and Find Full Text PDF

Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies.

Objectives: To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis.

Methods: Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage.

View Article and Find Full Text PDF

The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI) and type II (ATII) cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by an irreversible loss of lung function and is one of the most prevalent and severe diseases worldwide. A major feature of COPD is emphysema, which is the progressive loss of alveolar tissue. Coactivator-associated arginine methyltransferase-1 (CARM1) regulates histone methylation and the transcription of genes involved in senescence, proliferation, and differentiation.

View Article and Find Full Text PDF

Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics.

View Article and Find Full Text PDF

Purpose: The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model.

View Article and Find Full Text PDF

Purpose: DNA methylation contributes to carcinogenesis by mediating transcriptional regulation and chromatin remodelling, which may influence the effect of DNA-damaging drugs. We examined the prognostic and predictive impact of DNA methyltransferase (DNMT) 1 and 3b expression in gastric carcinomas (GC) treated by neoadjuvant chemotherapy. In vitro, DNMT1 expression and chemosensitivity were investigated for a functional relationship and the DNMT inhibitor decitabine (DAC) was tested as an alternative treatment option.

View Article and Find Full Text PDF

Background: Histone deacetylases (HDACs) are enzymes which play a central role in post-translational histone and non-histone protein modification. Deregulation of HDACs has been detected in various human malignancies and may also influence response to chemotherapy.

Aims: To investigate the expression of class I histone deacetylase (HDAC) isoforms 1 and 2 in oesophageal adenocarcinomas.

View Article and Find Full Text PDF

Background: Histone deacetylases (HDACs) modulate chromatin and may influence the effect of DNA-damaging drugs. We investigated HDAC1 and -2 expression in gastric carcinomas (GCs) for an association of patient outcome with conventional neoadjuvant chemotherapy. In vitro, HDAC inhibitors were evaluated as alternative treatment options.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionak4gt46mc3eu8cj254rhi1h29p7tmc9r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once