Heartworm disease, caused by Dirofilaria immitis, remains a significant threat to canines and felines. The development of parasites resistant to macrocyclic lactones (ML) has created a significant challenge to the control of the infection. The goal of this study was to determine if mice lacking a functional immune response would be susceptible to D.
View Article and Find Full Text PDFThe spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) cell lines are widely used model systems to study molecular aspects of lung cancer. Comparative and in-depth proteome expression data across many NSCLC cell lines has not been generated yet, but would be of utility for the investigation of candidate targets and markers in oncogenesis. We employed a SILAC reference approach to perform replicate proteome quantifications across 23 distinct NSCLC cell lines.
View Article and Find Full Text PDFProtein phosphorylation controls the activity of signal transduction pathways regulated by kinases and phosphatases. Little is known, however, about the impact of preanalytical factors, for example, delayed times to tissue fixation, on global phosphoprotein levels in tissues. The aim of this study was to characterize the potential effects of delayed tissue preservation (cold ischemia) on the levels of phosphoproteins using targeted and nontargeted proteomic approaches.
View Article and Find Full Text PDFDelineation of phosphorylation-based signaling networks requires reliable data about the underlying cellular kinase-substrate interactions. We report a chemical genetics and quantitative phosphoproteomics approach that encompasses cellular kinase activation in combination with comparative replicate mass spectrometry analyses of cells expressing either inhibitor-sensitive or resistant kinase variant. We applied this workflow to Plk1 (Polo-like kinase 1) in mitotic cells and induced cellular Plk1 activity by wash-out of the bulky kinase inhibitor 3-MB-PP1, which targets a mutant kinase version with an enlarged catalytic pocket while not interfering with wild-type Plk1.
View Article and Find Full Text PDFProtein phosphorylation is the most important type of reversible post-translational modification involved in the regulation of cellular signal-transduction processes. In addition to controlling normal cellular physiology on the molecular level, perturbations of phosphorylation-based signaling networks and cascades have been implicated in the onset and progression of various human diseases. Recent advances in mass spectrometry-based proteomics helped to overcome many of the previous limitations in protein phosphorylation analysis.
View Article and Find Full Text PDF