Aim: Nanoparticle-based drug carriers hold great promise for the development of targeted therapies in pregnancy with reduced off-target effects. Here, we performed a mechanistic in vitro study on placental localization and penetration of gold nanoparticles (AuNPs) in dependence of particle size and surface modification.
Materials & Methods: AuNP uptake and penetration in human placental coculture microtissues was assessed by inductively coupled plasma-mass spectrometry, transmission electron microscopy and laser ablation-inductively coupled plasma-mass spectrometry.
Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level.
View Article and Find Full Text PDFNon-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair.
View Article and Find Full Text PDFZnO nanoparticles (NPs) elicit significant adverse effects in various cell types, organisms and in the environment. The toxicity of nanoscale ZnO has often been ascribed to the release of zinc ions from the NPs but it is not yet understood to which extent these ions contribute to ZnO NP toxicity and what are the underlying mechanisms. Here, we take one step forward by demonstrating that ZnO-induced Jurkat cell death is largely an ionic effect involving the extracellular release of high amounts of Zn(II), their rapid uptake by the cells and the induction of a caspase-independent alternative apoptosis pathway that is independent of the formation of ROS.
View Article and Find Full Text PDFBiomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst.
View Article and Find Full Text PDF