We investigate yttrium iron garnet (YIG)/cobalt (Co) heterostructures using broadband ferromagnetic resonance (FMR). We observe an efficient excitation of perpendicular standing spin waves (PSSWs) in the YIG layer when the resonance frequencies of the YIG PSSWs and the Co FMR line coincide. Avoided crossings of YIG PSSWs and the Co FMR line are found and modeled using mutual spin pumping and exchange torques.
View Article and Find Full Text PDFWe investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usual [Formula: see text] relation well established in the collinear magnet yttrium iron garnet, with [Formula: see text] the angle between magnetization and spin Hall spin polarization direction.
View Article and Find Full Text PDFWe investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect.
View Article and Find Full Text PDF