Introduction: VEXAS syndrome, characterized by a UBA1 gene mutation, is a rare and severe systemic inflammatory disease predominantly affecting men. Since its initial description in 2020, it has been noted for its broad clinical phenotype and frequent misdiagnosis.
Case Presentation: A 76-year-old Caucasian male patient diagnosed with VEXAS syndrome is presented in this case report.
Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO) monitoring under a metabolic hood.
View Article and Find Full Text PDFUnlabelled: Patients with chronic obstructive pulmonary disease (COPD) endure excessive resistive and elastic loads leading to chronic respiratory failure. Oxygen supplementation corrects hypoxemia but is not expected to reduce mechanical loads. Nasal high-flow (NHF) therapy supports breathing by reducing dead space, but it is unclear how it affects mechanical loads of patients with COPD.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) with hypercapnia is associated with increased mortality. Non-invasive ventilation (NIV) can lower hypercapnia and ventilator loads but is hampered by a low adherence rate leaving a majority of patients insufficiently treated. Recently, nasal high flow (NHF) has been introduced in the acute setting in adults, too.
View Article and Find Full Text PDFObjective: Localization of atherosclerotic plaques typically correlates with areas of biomechanical strain where shear stress is decreased while stretch, thought to promote atherogenesis through enhanced oxidative stress, is increased.
Methods And Results: In human cultured endothelial cells, nitric oxide synthase expression was exclusively shear stress-dependent whereas expression of glutathione peroxidase-1 (GPx-1), but not that of Cu(2+)/Zn(2+)-superoxide dismutase or Mn(2+)-superoxide dismutase, was upregulated solely in response to cyclic stretch. GPx-1 expression was also enhanced in isolated mouse arteries perfused at high pressure.