Climate change is swiftly altering environmental winter conditions, leading to significant ecological impacts such as phenological shifts in many species. As a result, animals might face physiological mismatches due to longer or earlier activity periods and are at risk of being exposed to late spring freezes. Our study points for the first time to the complex physiological challenges that amphibians face as a result of changing thermal conditions due to winter climate change.
View Article and Find Full Text PDFEnvironmental filtering shapes animal communities by preventing the colonization and persistence of certain species in a given habitat. More heterogenous environments are presumed to support a greater number of species and, consequently, increased species diversity, as environmental filters are also likely more heterogenous. Amphibians are especially sensitive to environmental influences due to distinct characteristics like permeable skin and low mobility.
View Article and Find Full Text PDFMaintaining a high and stable body temperature as observed in most endothermic mammals and birds is energetically costly and many heterothermic species reduce their metabolic demands during energetic bottlenecks through the use of torpor. With the increasing number of heterotherms revealed in a diversity of habitats, it becomes apparent that triggers and patterns of torpor use are more variable than previously thought. Here, we report the previously overlooked use of, shallow rest-time torpor (body temperature >30 °C) in African lesser bushbabies, Galago moholi.
View Article and Find Full Text PDFThe ecophysiological responses of species to urbanisation reveal important information regarding the processes of successful urban colonization and biodiversity patterns in urban landscapes. Investigating these responses will also help uncover whether synurban species are indeed urban 'winners'. Yet we still lack basic knowledge about the physiological costs and overall energy budgets of most species living in urban habitats, especially for mammals.
View Article and Find Full Text PDFAbstractTorpor is a highly effective response to counter various ecological and physiological bottlenecks in endotherms. In this study, we examined interrelations between thermoregulatory responses and key environmental variables in free-living squirrel gliders () in a habitat with drastic climatic and ecological changes across seasons. To this end, we measured body temperature () and heart rate () simultaneously throughout the year using implanted data loggers.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
December 2022
Throughout the year, wild animals are exposed to a variety of challenges such as changing environmental conditions and reproductive activity. These challenges may affect their stress hormone levels for varying durations and in varying intensities and impacts. Measurements of the glucocorticoid hormone cortisol in the hair of mammals are considered a good biomarker for measuring physiological stress and are increasingly used to evaluate stress hormone levels of wild animals.
View Article and Find Full Text PDFParasitic infections can impact the fitness of individuals and can have influence on animals' population dynamics. An individuals' parasite prevalence often changes depending on external or seasonal changes, for example, rainfall and ambient temperatures, but also on internal changes, for example, changes in body condition. In this study we aimed to identify the environmental factors that may influence the intestinal parasite and ectoparasite prevalence of the folivorous Malagasy primate species, Lepilemur edwardsi, living in a seasonal dry deciduous forest.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
June 2022
Phenotypic plasticity may allow ectotherms with complex life histories such as amphibians to cope with climate-driven changes in their environment. Plasticity in thermal tolerance (i.e.
View Article and Find Full Text PDFMany species are widely distributed and individual populations can experience vastly different environmental conditions over seasonal and geographic scales. With such a broad ecological reality, datasets with limited spatial and temporal resolution may not accurately represent a species and could lead to poorly informed management decisions. Because physiological flexibility can help species tolerate environmental variation, we studied the physiological responses of two separate populations of Macronycteris commersoni, a bat widespread across Madagascar, in contrasting seasons.
View Article and Find Full Text PDFAnimals experience seasonal changes of environmental and ecological conditions in most habitats. Fluctuations in ambient temperature have a strong influence on thermoregulation, particularly on small endothermic mammals. However, different mammalian species cope differently with these changes.
View Article and Find Full Text PDFProc Biol Sci
January 2021
Many tropical mammals are vulnerable to heat because their water budget limits the use of evaporative cooling for heat compensation. Further increasing temperatures and aridity might consequently exceed their thermoregulatory capacities. Here, we describe two novel modes of torpor, a response usually associated with cold or resource bottlenecks, as efficient mechanisms to counter heat.
View Article and Find Full Text PDFEffective conservation actions require knowledge on the sensitivity of species to pollution and other anthropogenic stressors. Many of these stressors are endocrine disruptors (EDs) that can impair the hypothalamus-pituitary-thyroid axis and thus alter thyroid hormone (TH) levels with physiological consequences to wildlife. Due to their specific habitat requirements, amphibians are often sentinels of environmental degradation.
View Article and Find Full Text PDFOpen-flow respirometry is a common method to measure oxygen-uptake as a proxy of energy expenditure of organisms in real-time. Although most often used in the laboratory it has seen increasing application under field conditions. Air is drawn or pushed through a metabolic chamber or the nest with the animal, and the O depletion and/or CO accumulation in the air is analysed to calculate metabolic rate and energy expenditure.
View Article and Find Full Text PDFHibernation and daily torpor (heterothermy) allow endotherms to cope with demanding environmental conditions. The depth and duration of torpor bouts vary considerably between tropical and temperate climates, and tropical hibernators manage to cope with a wider spectrum of ambient temperature ( ) regimes during heterothermy. As cycles in can have profound effects on activity and torpor patterns as well as energy expenditure, we examined how these characteristics are affected by daily fluctuating versus constant in a tropical hibernator, the lesser hedgehog tenrec ().
View Article and Find Full Text PDFAnuran larvae show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. The capacity for temperature-induced developmental plasticity is determined by the thermal adaptation of a population. Multiple factors such as physiological responses to changing environmental conditions, however, might influence this capacity as well.
View Article and Find Full Text PDFEnvironmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity.
View Article and Find Full Text PDFEnvironmental change exposes wildlife to a wide array of environmental stressors that arise from both anthropogenic and natural sources. Many environmental stressors with the ability to alter endocrine function are known as endocrine disruptors, which may impair the hypothalamus-pituitary-thyroid axis resulting in physiological consequences to wildlife. In this study, we investigated how the alteration of thyroid hormone (TH) levels due to exposure to the environmentally relevant endocrine disruptor sodium perchlorate (SP; inhibitory) and exogenous L-thyroxin (T4; stimulatory) affects metabolic costs and energy allocation during and after metamorphosis in a common amphibian (Rana temporaria).
View Article and Find Full Text PDFEnvironmental variation induced by natural and anthropogenic processes including climate change may threaten species by causing environmental stress. Anuran larvae experiencing environmental stress may display altered thyroid hormone (TH) status with potential implications for physiological traits. Therefore, any capacity to adapt to environmental changes through plastic responses provides a key to determining species vulnerability to environmental variation.
View Article and Find Full Text PDFThe energy budgets of animal species are closely linked to their ecology, and balancing energy expenditure with energy acquisition is key for survival. Changes in animals' environments can be challenging, particularly for bats, which are small endotherms with large uninsulated flight membranes. Heterothermy is a powerful response used to cope with changing environmental conditions.
View Article and Find Full Text PDFChemical, physical and biological environmental stressors may affect the endocrine system, such as the thyroid hormone (TH) axis in larval amphibians with consequences for energy partitioning among development, growth and metabolism. We studied the effects of two TH level affecting compounds, exogenous l-thyroxine (T ) and sodium perchlorate (SP), on various measures of development and body condition in larvae of the African clawed frog (Xenopus laevis). We calculated the scaled mass index, hepatosomatic index and relative tail muscle mass as body condition indices to estimate fitness.
View Article and Find Full Text PDFLiving nonhuman primates generally inhabit tropical forests, and torpor is regarded as a strategy employed by cold-adapted organisms. Yet, some primates employ daily torpor or hibernation (heterothermy) under obligatory, temporary, or emergency circumstances. Though heterothermy is present in most mammalian lineages, there are only three extant heterothermic primate lineages: bushbabies from Africa, lorises from Asia, and dwarf and mouse lemurs from Madagascar.
View Article and Find Full Text PDFAnurans exhibit plasticity in the timing of metamorphosis and tadpoles show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. This developmental plasticity to changing thermal conditions is expected to be a primary factor that dictates the vulnerability of amphibians to increasing ambient temperatures such as are predicted in climate change scenarios. We analyzed the patterns of thermal effects on size and age at metamorphosis to investigate whether the intraspecific "temperature-size rule" is applicable over a broad range of anuran species by carrying out a combined analysis based on the data from 25 studies performed on 18 anuran species.
View Article and Find Full Text PDFEnergy expenditure and ambient temperature (T) are intrinsically linked through changes in an animal's metabolic rate. While the nature of this relationship is stable, the breadth of change in thermoregulatory cost varies with body size and physiological acclimatization to season. To explore seasonal metabolic changes of small mammals, we studied a population of Eurasian red squirrels (Sciurus vulgaris) in a seminatural environment with a year-round supply of natural and supplemented food.
View Article and Find Full Text PDFNaturwissenschaften
October 2017
The physiological compensation of animals in changing environments through acclimatization has long been considered to be of minor importance in tropical ectotherms due to more stable climatic conditions compared to temperate regions. Contrasting this assumption are reports about a range of metabolic adjustments in tropical species, especially during the last two decades from field acclimatized animals. Metabolic rates are strongly linked to temperature in ectotherms but they also reflect energetic requirements and restrictions.
View Article and Find Full Text PDFThe spiny forest of South Madagascar is one of the driest and most unpredictable habitats in Africa. The small-bodied, nocturnal primate Lepilemur leucopus lives in this harsh habitat with high diurnal and seasonal changes in ambient temperature. In this study, we investigated seasonal adaptions in energy budgeting of L.
View Article and Find Full Text PDF