Publications by authors named "Kathrin Bellmann-Sickert"

Article Synopsis
  • * Researchers are developing peptide inhibitors to block the interaction between Sema-3A and NRP-1, especially since few interaction points are understood.
  • * The study successfully identified a specific binding site on Sema-3A for these peptides using advanced techniques, paving the way for potential treatments for acute kidney injury by targeting the Sema-3A-NRP-1 interaction.
View Article and Find Full Text PDF

Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells.

View Article and Find Full Text PDF

Implant design has evolved from biochemically inert substrates, minimizing cell and protein interaction, towards sophisticated bioactive substrates, modulating the host response and supporting the regeneration of the injured tissue. Important aspects to consider are the control of cell adhesion, the discrimination of bacteria and non-local cells from the desired tissue cell type, and the stimulation of implant integration and wound healing. Here, the extracellular matrix acts as a role model providing us with inspiration for sophisticated designs.

View Article and Find Full Text PDF

Supporting the wound healing process by sending the appropriate cytokine signals can shorten healing time and overcome chronic inflammation syndromes. Even though adhesion peptides consisting of Arg-Gly-Asp (RGD) are commonly used to enhance cell-surface interactions, peptide-mediated cytokine delivery has not been widely exploited so far. Cytokines interact with high affinity with their cognitive receptors but also with sulfated glycosaminoglycans (GAGs), both of which form a base for incorporation of cytokines into functional biomaterials.

View Article and Find Full Text PDF

Controlled release of active biomolecules is an attractive approach to modulate chemotactic gradients and accordingly the recruitment of cells, e.g. endothelial progenitor cells to improve wound healing or stimulate angiogenesis after myocardial infarction.

View Article and Find Full Text PDF

Peptide YY (PYY) is an endogenous ligand of the neuropeptide Y receptor (YR), on which it acts to reduce food intake. Chemically modified PYY analogues with extended half-lives are potential therapeutics for the treatment of obesity. Here we show that the common half-life extending strategies PEGylation and lipidation not only control PYY's pharmacokinetics but also affect central aspects of its pharmacodynamics.

View Article and Find Full Text PDF

As a very abundant neuropeptide in the brain and widely distributed peptide hormone in the periphery, neuropeptide Y (NPY) appears to be a multisignaling key peptide. Together with peptide YY, pancreatic polypeptide and the four human G protein-coupled receptor subtypes hY1R, hY2R, hY4R and hY5R it forms the NPY/hYR multiligand/multireceptor system, which is involved in essential physiological processes as well as in human diseases. In particular, NPY-induced hY1R signaling plays a central role in the regulation of food intake and stress response as well as in obesity, mood disorders and cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The gastric peptide hormone human PYY is being studied for potential obesity treatments, focusing on how different modifications (PEGylation and lipidation) affect its structure and behavior.
  • Researchers used various techniques to analyze the aggregation and conformation of PYY derivatives, discovering that the native peptide forms amyloid fibrils at higher concentrations while PEG or lipid modifications can inhibit this formation.
  • PEGylation primarily leads to single-chain structures with reduced heating loss of α-helix, whereas lipidation creates small spherical micelle-like aggregates, indicating that these modifications can effectively manipulate the peptide's properties.
View Article and Find Full Text PDF

The human Y receptor is overexpressed in breast tumour cells and is, therefore, a valuable target for site-selective drug delivery. The well-established hY R-selective ligand [Phe7,Pro34]NPY has been used to couple to drugs but its length of 36 amino acids also implies complex synthesis and high production costs. Therefore, shorter ligands are desirable.

View Article and Find Full Text PDF

The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising.

View Article and Find Full Text PDF

Vaspin is a glycoprotein with three predicted glycosylation sites at asparagine residues located in proximity to the reactive center loop and close to domains that play important roles in conformational changes underlying serpin function. In this study, we have investigated the glycosylation of human vaspin and its effects on biochemical properties relevant to vaspin function. We show that vaspin is modified at all three sites and biochemical data demonstrate that glycosylation does not hinder inhibition of the target protease kallikrein 7.

View Article and Find Full Text PDF

Neurotensin (NT) is a peptide expressed in the brain and in the gastrointestinal tract. Brain NT inhibits food intake, but the effects of peripheral NT are less investigated. In this study, peripheral NT decreased food intake in both mice and rats, which was abolished by a NT antagonist.

View Article and Find Full Text PDF

The stromal cell-derived factor 1α (CXCL12) belongs to the CXC chemokine family and plays an important role in tissue regeneration and the recruitment of stem cells. Here, a stable chemotactic gradient is essential that is formed by the interaction of CXCL12 with the extracellular matrix. Binding properties of CXCL12 to naturally occurring glycosaminoglycans (GAGs) as well as to the artificial highly sulfated hyaluronic acid (HA) are investigated by using a combination of NMR spectroscopy, molecular modeling and molecular dynamics simulations.

View Article and Find Full Text PDF

Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is an interesting target for biotechnological applications, because of its vast substrate variety combined with high P450 monooxygenase activity. The low stability in vitro could be overcome by immobilization on surfaces. Here we describe a novel method for immobilization on metal surfaces by using selectively binding peptides.

View Article and Find Full Text PDF

Subtle changes in the sequence at the N-terminus and in the aromatic core of hexapeptidic ghrelin receptor inverse agonists can switch behavior from inverse agonism to agonism, but the C-terminal role of the sequence is unclear. Thus, analogs of the ghrelin receptor inverse agonist KbFwLL-NH2 (b = β-(3-benzothienyl)-d-alanine) were synthesized by solid phase peptide synthesis in order to identify the influence of aromaticity, charge, and hydrophobicity. Potency and efficacy of the hexapeptides were evaluated in inositol triphosphate turnover assays.

View Article and Find Full Text PDF

Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments.

View Article and Find Full Text PDF

Pancreatic polypeptide (PP) is a satiety-inducing gut hormone targeting predominantly the Y4 receptor within the neuropeptide Y multiligand/multireceptor family. Palmitoylated PP-based ligands have already been reported to exert prolonged satiety-inducing effects in animal models. Here, we suggest that other lipidation sites and different fatty acid chain lengths may affect receptor selectivity and metabolic stability.

View Article and Find Full Text PDF

Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits.

View Article and Find Full Text PDF

The main benefit of natural peptides, peptide analogs and newly designed peptides as therapeutics, lies in their high selectivity and affinity, which are frequently in the nanomolar range. New drugs targeting protein-protein interactions often require larger interaction sites than small molecules can offer. Thus, many peptidic drugs are already applied in therapy at the current state.

View Article and Find Full Text PDF

The main disadvantages of peptide pharmaceuticals are their rapid degradation and excretion, their low hydrophilicity, and low shelf lifes. These bottlenecks can be circumvented by acylation with fatty acids (lipidation) or polyethylene glycol (PEGylation). Here, we describe the modification of a human pancreatic polypeptide analogue specific for the human (h)Y(2) and hY(4) receptor with PEGs of different size and palmitic acid.

View Article and Find Full Text PDF

The chemokine stromal cell-derived factor-1α (SDF1α) is strongly involved in organogenesis, as well as inflammation and tissue repair, and acts by attracting different kinds of stem and progenitor cells. Therefore, it constitutes an interesting compound for drug development in regenerative medicine. However, it is prone to inactivation by proteolytic cleavage in human serum.

View Article and Find Full Text PDF

SDF1α plays an important role in the regeneration of injured tissue after ischemia or stroke by inducing the migration of progenitor cells. In order to study the function of this therapeutically relevant chemokine site-specific protein labelling is of great interest. However, modification of SDF1α is complicated because of its complex tertiary structure.

View Article and Find Full Text PDF

Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability.

View Article and Find Full Text PDF

Asymmetric dimethylation of arginine residues is a common posttranslational modification of proteins carried out by type I protein arginine methyltransferases, including PRMT1 and -3. We report that the consecutive transfer of two methyl groups to a single arginine side chain by PRMT1 and -3 occurs in a distributive manner, i.e.

View Article and Find Full Text PDF