Publications by authors named "Kathleen Woods Ignatoski"

Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits.

View Article and Find Full Text PDF

Objective: To investigate the effect of nutrient withdrawal on human intestinal epithelial barrier function (EBF). We hypothesized that unfed mucosa results in decreased EBF. This was tested in a series of surgical small intestinal resection specimens.

View Article and Find Full Text PDF

Glucagon-like peptide-2 (GLP-2) has been shown to be effective in patients with short bowel syndrome (SBS), but it is rapidly inactivated by dipeptidyl peptidase IV (DPP4). We used an orally active DPP4 inhibitor (DPP4-I), MK-0626, to determine the efficacy of this approach to promote adaptation after SBS, determined optimal dosing, and identified further functional actions in a mouse model of SBS. Ten-week-old mice underwent a 50% proximal small bowel resection.

View Article and Find Full Text PDF

Novel strategies are needed to address the problem of patients with short bowel syndrome. We previously demonstrated a three-fold lengthening of pig bowel after 2 weeks of applied distractive forces, but we have not elucidated the mechanisms facilitating this growth. We used a mouse model of distraction-induced enterogenesis.

View Article and Find Full Text PDF

Although current breast cancer treatment guidelines limit the use of HER2-blocking agents to tumors with HER2 gene amplification, recent retrospective analyses suggest that a wider group of patients may benefit from this therapy. Using breast cancer cell lines, mouse xenograft models and matched human primary and metastatic tissues, we show that HER2 is selectively expressed in and regulates self-renewal of the cancer stem cell (CSC) population in estrogen receptor-positive (ER(+)), HER2(-) luminal breast cancers. Although trastuzumab had no effects on the growth of established luminal breast cancer mouse xenografts, administration after tumor inoculation blocked subsequent tumor growth.

View Article and Find Full Text PDF

Replacement of a diseased organ with an autologously derived tissue is an ideal therapy for some medical problems. However, it is difficult to recreate many adult human tissues in vitro due to the functionally necessary architecture of most organs and the lack of understanding of methods to direct the development of the organ of interest. The parathyroid gland is ideal for in vitro organ development because this gland is relatively simple, is transplantable, and is commonly affected by a surgical complication rather than an autoimmune disease.

View Article and Find Full Text PDF

Background: Hypoparathyroidism is the most frequent permanent complication of thyroid surgery. Our hypothesis is that human precursor cells in culture can be differentiated into parathyroid cells and used to reconstitute function. Human embryonic stem cells (hESCs) are a stable model to study differentiation into parathyroid-like cells.

View Article and Find Full Text PDF

Prostaglandin E2, which is known to contribute to cancer progression, is inactivated by the catabolic enzyme, 15-hydroxyprostaglandin dehydrogenase (PGDH), which has tumor-suppressor activity in lung, colon, breast, and gastric cancers. Therefore, we evaluated the expression of PGDH in human bladder cancer tissue specimens and cell lines. Immunoperoxidase staining of bladder cancer tissues demonstrated that (1) PGDH is highly expressed by normal urothelial cells but (2) reduced in many low stage (Ta/Tis) bladder cancers, and (3) PGDH is completely lost in most invasive bladder cancers.

View Article and Find Full Text PDF

Iatrogenic hypoparathyroidism is the most common complication of cervical endocrine surgery. Current management is limited and palliative. As the molecular steps in parathyroid development have been defined, they may be replicable in vitro, with a goal of cellular replacement therapy.

View Article and Find Full Text PDF

Purpose: External beam radiotherapy (RT) is often used in an attempt to cure localized prostate cancer (PCa), but it is only palliative against disseminated disease. Raf kinase inhibitory protein (RKIP) is a metastasis suppressor whose expression is reduced in approximately 50% of localized PCa tissues and is absent in metastases. Chemotherapeutic agents have been shown to induce tumor apoptosis through induction of RKIP expression.

View Article and Find Full Text PDF

Background: HER-2 is an epidermal growth factor receptor (EGFR) family receptor tyrosine kinase that is overexpressed in about 30% of human breast cancers correlating with a poor prognosis. Previous work in our laboratory has found that HER-2 overexpression plays a role in growth factor independence, anchorage independence, motility, and invasion of naturally occurring basement membranes. We also found that AKT was activated by p38MAPK in these cells, but this activation did not play a role in invasion.

View Article and Find Full Text PDF

To better understand the mechanisms of transformation by the oncogene HER-2, we transduced the human mammary epithelial (HME) cell line MCF-10A with HER-2 and developed a cell line that appeared to moderately overexpress HER-2. These MCF-10HER-2 cells were unable to grow in the absence of epidermal growth factor (EGF). However, coexpression of HER-2 with the HPV-16 oncoproteins E6 and E7 resulted in EGF-independent cells that expressed very high levels of constitutively activated HER-2.

View Article and Find Full Text PDF

We previously demonstrated that erbB-2-overexpressing human mammary epithelial (HME) cells exhibit several transformed phenotypes including growth factor independence, anchorage-independent growth, motility, and invasiveness. Because phosphatidylinositol 3'-kinase (PI3K) is a major target of erbB-2 activation, we tested the contribution that PI3K and its downstream signaling pathways make to these phenotypes. Utilizing a constitutively active form of PI3K, p110CAAX, we show that PI3K can mediate most phenotypes observed in erbB-2-overexpressing cells.

View Article and Find Full Text PDF

We have previously shown that human breast cancer cells that overexpress erbB-2 are growth factor-independent. In order to test the contribution of erbB-2 to this and other transformed phenotypes without the genetic instability of cancer cells, erbB-2 was overexpressed in human mammary epithelial (HME) cells. ErbB-2-overexpressing HME cells exhibit several transformed phenotypes including cell surface alpha(4) integrin downregulation and invasiveness.

View Article and Find Full Text PDF

HER2 (erbB2/neu) is a member of the erbB family of receptor tyrosine kinases and is involved in regulating the growth of several types of human carcinomas. HER2 represents a successful therapeutic target of the biotechnology era as exemplified by the drug Herceptin (trastuzumab), which has clinical activity in a subset of breast cancer patients. Using DNA microarrays, we identified a cohort of genes that are differentially regulated by HER2 in breast epithelial cells.

View Article and Find Full Text PDF