Publications by authors named "Kathleen Siemers"

The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body.

View Article and Find Full Text PDF

The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen during an in vivo infection. binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells.

View Article and Find Full Text PDF

Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions.

View Article and Find Full Text PDF

Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is mediated by the evolutionarily conserved LGN/NuMA complex, which regulates cortical attachments of astral spindle microtubules.

View Article and Find Full Text PDF

β-Catenin is a multifunctional protein with critical roles in cell-cell adhesion, Wnt signaling, and the centrosome cycle. Whereas the regulation of β-catenin in cell-cell adhesion and Wnt signaling are well understood, how β-catenin is regulated at the centrosome is not. NIMA-related protein kinase 2 (Nek2), which regulates centrosome disjunction/splitting, binds to and phosphorylates β-catenin.

View Article and Find Full Text PDF

Regulation of the microtubule- and actin-binding protein adenomatous polyposis coli (APC) is crucial for the formation of cell extensions in many cell types. This process requires inhibition of glycogen synthase kinase-3β (GSK-3β), which otherwise phosphorylates APC and decreases APC-mediated microtubule bundling. Although it is assumed, therefore, that APC phosphorylation is decreased during initiation of cell extensions, the phosphorylation state of APC has never been analyzed directly.

View Article and Find Full Text PDF

Adenomatous polyposis coli (APC) and End-binding protein 1 (EB1) localize to centrosomes independently of cytoplasmic microtubules (MTs) and purify with centrosomes from mammalian cell lines. Localization of EB1 to centrosomes is independent of its MT binding domain and is mediated by its C-terminus. Both APC and EB1 preferentially localize to the mother centriole and EB1 forms a cap at the end of the mother centriole that contains the subdistal appendages as defined by epsilon-tubulin localization.

View Article and Find Full Text PDF

End-binding protein (EB) 1 binds to the C-terminus of adenomatous polyposis coli (APC) protein and to the plus ends of microtubules (MT) and has been implicated in the regulation of APC accumulation in cortical clusters at the tip of extending membranes. We investigated which APC domains are involved in cluster localization and whether binding to EB1 or MTs is essential for APC cluster localization. Armadillo repeats of APC that lack EB1- and MT-binding domains are necessary and sufficient for APC localization in cortical clusters; an APC fragment lacking the armadillo repeats, but containing MT- and EB1-binding domains, does not localize to the cortical clusters but instead co-aligns with MTs throughout the cell.

View Article and Find Full Text PDF