Publications by authors named "Kathleen Schmohl"

Safe vascular stent application requires rapid expansion of the stent to minimize the risk of procedural ischemia. While high expansion speeds can be achieved with metallic stents, they are not necessarily feasible with biodegradable polymeric stents due to the viscoelastic material behavior. This study reports on a novel biodegradable polymer blend material based on poly(L-lactide) (PLLA) and poly(4-hydroxybutyrate) (P4HB), and describes the mechanical properties and in vitro degradation behavior of a balloon-expandable slotted tube stent concept.

View Article and Find Full Text PDF

Background: Decellularized extracellular matrix has been suggested as a scaffold for heart valve tissue engineering or direct implantation. However, cell removal impairs the physical properties of the valve structure and exposes bare collagen fibers that are highly thrombogenic. Matrix/polymer hybrid valves with improved biological and mechanical characteristics may be advantageous.

View Article and Find Full Text PDF

Hybrid heart valve scaffolds were fabricated from decellularized porcine aortic heart valve matrices and enhanced with bioresorbable polymers using different protocols: (i) dip coating of lyophilized decellularized matrices, and (ii) impregnation of wet decellularized matrices. The following polymers were evaluated: poly(4-hydroxybutyrate) and poly(3-hydroxybutyrate-co4-hydroxybutyrate). Tensile tests were conducted to assess the biomechanical behavior of valve leaflet strips.

View Article and Find Full Text PDF