Publications by authors named "Kathleen Sanen"

To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate.

View Article and Find Full Text PDF

Despite the spontaneous regenerative capacity of the peripheral nervous system, large gap peripheral nerve injuries (PNIs) require bridging strategies. The limitations and suboptimal results obtained with autografts or hollow nerve conduits in the clinic urge the need for alternative treatments. Recently, we have described promising neuroregenerative capacities of Schwann cells derived from differentiated human dental pulp stem cells (d-hDPSCs) in vitro.

View Article and Find Full Text PDF

detection of MSCs remains difficult and warrants additional methods to aid with their characterization . Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation.

View Article and Find Full Text PDF

Objectives: NSAIDs are used to relieve pain and decrease inflammation by inhibition of cyclooxygenase (COX)-catalyzed prostaglandin (PG) synthesis. PGs are fatty acid mediators involved in cartilage homeostasis, however the action of their synthesizing COX-enzymes in cartilage differentiation is not well understood. In this study we hypothesized that COX-1 and COX-2 have differential roles in chondrogenic differentiation.

View Article and Find Full Text PDF

Unlabelled: Hydrogels have emerged as promising biomaterials for regenerative medicine. Despite major advances, tissue engineers have faced challenges in studying the complex dynamics of cell-mediated hydrogel remodelling. Second harmonic generation (SHG) microscopy has been a pivotal tool for non-invasive visualization of collagen type I hydrogels.

View Article and Find Full Text PDF

Diamond nanoparticles (DNPs) are very attractive for biomedical applications, particularly for bioimaging. The aim of this study was to evaluate the impact of DNPs on neural cancer cells and thus to assess the possible application of DNPs for these cells imaging. For this purpose, the neuroblastoma SH-SY5Y cell line was chosen.

View Article and Find Full Text PDF

Hypoxia promotes genetic instability and is therefore an important factor in carcinogenesis. We have previously shown that activation of the hypoxia responsive transcription factor HIFα can enhance the mutagenic phenotype induced by the environmental mutagen benzo[a]pyrene (BaP). To further elucidate the mechanism behind the ability of hypoxia to increase mutagenicity of carcinogens, we examined the activation and detoxification of BaP under hypoxic conditions.

View Article and Find Full Text PDF

The aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment.

View Article and Find Full Text PDF

Successful engineering of biomimetic tissue relies on an accurate quantification of the mechanical properties of the selected scaffold. To improve this quantification, typical bulk rheological measurements are often complemented with microscopic techniques, including label-free second harmonic generation (SHG) imaging. Image correlation spectroscopy (ICS) has been applied to obtain quantitative information from SHG images of fibrous scaffolds.

View Article and Find Full Text PDF

In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d-hDPSCs), which promoted survival and neurite outgrowth in 2-dimensional dorsal root ganglia cultures.

View Article and Find Full Text PDF