Publications by authors named "Kathleen S Curtis"

Article Synopsis
  • Research on body weight gain in women post-menopause is complicated, with studies often using different models to explore hormone regulation.
  • In this study, ovariectomized (OVX) rats showed rapid weight gain, prompting an investigation into changes in hormone receptors for ghrelin, insulin, and leptin in specific brain regions.
  • Results indicated that while ghrelin receptors remained unchanged in all groups, insulin receptors decreased in OVX rats, and leptin receptors showed varying changes, suggesting altered metabolic signaling after ovariectomy.
View Article and Find Full Text PDF

Here, we describe a pedagogical approach that combines didactics with active learning to facilitate integration across physiological systems in a team-taught, graduate-level physiology course. We covered the major physiological systems, with each system preceded by an overview of its evolution/ontogeny to provide a broader perspective. Lectures provided a framework for integration by giving examples of how each system interacted with systems that preceded and followed.

View Article and Find Full Text PDF

We used temporally-targeted food restriction (TTFR), in which ovariectomized rats had chow only for 2 h/day, to test the hypothesis that estradiol benzoate (EB) suppresses feeding and decreases body weight during brief (4 day) TTFR, as it does during ad libitum feeding. All rats lost weight during TTFR, but the loss was greater with EB treatment. However, OIL and EB-treated rats ate comparable amounts of chow during TTFR.

View Article and Find Full Text PDF

To determine whether breastfeeding alters women's interest in eating foods of different taste categories, we surveyed women at their 6-week post-partum check-up, asking them to rate their interest in eating various foods. Regardless of whether women responded in English or Spanish, they indicated greatest interest in eating sweet-tasting foods and least interest in eating sour-tasting foods, independent of whether they were breastfeeding. In general, the interest in eating foods of all taste qualities foods was increased in women who were breastfeeding; however, interest in eating salty and sour foods was not altered by breastfeeding in Spanish respondants.

View Article and Find Full Text PDF

Multiple stimulatory and inhibitory neural circuits control eating, and these circuits are influenced by an array of hormonal, neuropeptide, and neurotransmitter signals. For example, estrogen and oxytocin (OT) both are known to decrease food intake, but the mechanisms by which these signal molecules influence eating are not fully understood. These studies investigated the interaction between estrogen and OT in the control of food intake.

View Article and Find Full Text PDF

Systemic inflammation is present in obesity and emerging evidence, primarily from studies using male rodents fed high-fat diets, suggests neuroimmune signaling also is involved. We investigated early changes in neuroimmune signaling during the weight gain that follows ovariectomy in rats. Ovariectomized (OVX) rats were given standard rat chow and terminated 5 days (baseline), 4 or 8 weeks after ovariectomy.

View Article and Find Full Text PDF

Estrogens are well known to increase locomotor activity in laboratory rodents; however, the underlying mechanism remains unclear. We used voluntary wheel running by female rats as an index of locomotor behavior to investigate this issue. We first determined whether the estrogen-induced increase in locomotion was susceptible to inhibition by a physiological challenge, and next whether it was associated with dopaminergic activation in the central reward area, nucleus accumbens.

View Article and Find Full Text PDF

Age-dependent impairments in the central control of compensatory responses to body fluid challenges have received scant experimental attention, especially in females. In the present study, we found that water drinking in response to β-adrenergic activation with isoproterenol (30 μg/kg, s.c.

View Article and Find Full Text PDF

Most investigators use a single treatment such as water deprivation or dietary sodium deficiency to evaluate thirst or sodium appetite, which underlie behavioral responses to body fluid challenges. The goal of the present experiments was to assess the effects of combined treatments in driving behaviors. Therefore, we evaluated the effect of combined overnight water deprivation and dietary sodium deficiency on water intake and salt intake by adult male rats in 2-bottle (0.

View Article and Find Full Text PDF

Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia.

View Article and Find Full Text PDF

The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor.

View Article and Find Full Text PDF

Estradiol (E2) decreases both water and saline intakes by female rats. The ERα and ERβ subtypes are expressed in areas of the brain that control fluid intake; however, the role that these receptors play in E2's antidipsogenic and antinatriorexigenic effects have not been examined. Accordingly, we tested the hypothesis that activation of ERα and ERβ decreases water and saline intakes by female rats.

View Article and Find Full Text PDF

This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2) are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα), catecholamines, and/or oxytocin (OT). An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized (OVX) rats compared to numbers in male rats and in OVX rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus.

View Article and Find Full Text PDF

Regulation of appropriate osmolality of body fluid is critical for survival, yet there are sex differences in compensatory responses to osmotic challenges. Few studies have focused on the role of sex hormones such as estradiol in behavioral responses to increases or decreases in systemic osmolality, and even fewer studies have investigated whether central actions of estrogens contribute to these responses. This overview integrates findings from a series of ongoing and completed experiments conducted in my laboratory to assess estradiol effects on water and NaCl intake in response to osmotic challenges, and on activity in central pathways that mediate such responses.

View Article and Find Full Text PDF

Female mating behavior in rats is associated with hormone-induced changes in the dendritic arbor of neurons in the ventromedial nucleus of the hypothalamus (VMH), particularly the ventrolateral portion. Regulation of mating behavior in female prairie voles differs substantially from that in rats; therefore, we examined the dendritic morphology of VMH neurons in this species. Sexually naïve adult female prairie voles were housed with a male to activate the females' reproductive endocrine system.

View Article and Find Full Text PDF

Serotonin (5-HT) has been implicated in centrally mediated compensatory responses to volume loss in rats. Accordingly, we hypothesized that slowly developing, non-hypotensive hypovolemia increases serotonin in the hindbrain nucleus of the solitary tract (NTS). We produced volume loss in adult male rats by administering hyperoncotic polyethylene glycol (PEG) and then assessed 5-HT levels in the NTS using measurements of tissue 5-HT content or 5-HT immunohistochemistry.

View Article and Find Full Text PDF

We recently reported that the latency to begin drinking water during slow, intravenous infusion of a concentrated NaCl solution was shorter in estradiol-treated ovariectomized rats compared to oil vehicle-treated rats, despite comparably elevated plasma osmolality. To test the hypothesis that the decreased latency to begin drinking is attributable to enhanced detection of increased plasma osmolality by osmoreceptors located in the CNS, the present study used immunocytochemical methods to label fos, a marker of neural activation. Increased plasma osmolality did not activate the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), or the nucleus of the solitary tract (NTS) in either oil vehicle-treated rats or estradiol-treated rats.

View Article and Find Full Text PDF

Previous studies showed that treatment with 17-β-estradiol-3-benzoate (EB) reduces isoproterenol (ISOP) stimulated water intake by ovariectomized rats. This effect was observed 48h after the second of two EB injections, suggesting that the attenuation is attributable to classic EB actions to alter gene expression. However, in addition to classic, slowly-occurring, genomic effects, estrogens have more rapidly-occurring effects that may be nongenomic or 'nonclassical' genomic effects.

View Article and Find Full Text PDF

Estrogens affect body fluid balance, including sodium ingestion. Recent findings of a population of neurons in the hindbrain nucleus of the solitary tract (NTS) of rats that are activated during sodium need suggest a possible central substrate for this effect of estrogens. We used immunohistochemistry to label neurons in the NTS that express 11-β-hydroxysteroid dehydrogenase type 2 (HSD2), an enzyme that promotes aldosterone binding, in male rats, and in ovariectomized (OVX) rats given estradiol benzoate (EB) or oil vehicle (OIL).

View Article and Find Full Text PDF

Recent experiments showed that in a one-bottle test conducted 16h after sc injection of polyethylene glycol (PEG) solution, hypovolemic rats consumed water or 0.30 M NaCl in an initial drinking episode but did not empty the ingested fluid from the stomach or absorb it from the small intestine very rapidly, certainly not as rapidly as when 0.15M NaCl was consumed (Smith et al.

View Article and Find Full Text PDF

We examined the effects of estradiol on behavioral responses to osmotic challenges in ovariectomized (OVX) rats to test the hypothesis that estradiol enhances sensitivity to gradual changes in plasma osmolality (pOsm) in stimulating water intake. Despite comparably elevated pOsm after a slow infusion of 2 M NaCl, the latency to begin water intake was significantly less in estradiol-treated OVX rats compared to that in oil vehicle-treated rats. Other groups of OVX rats were injected with isoproterenol, which increases circulating angiotensin II.

View Article and Find Full Text PDF

Body fluid volume and electrolyte concentration are maintained at optimal levels by complex behavioral and physiological mechanisms that are integrated and coordinated by the central nervous system. From initial studies of estrogen effects on salt and water intake in the 1970s and later investigations of the role of estrogen in cardiovascular and neuroendocrine function, it has become increasingly clear that body fluid volume and osmotic regulation are affected by estrogen. In the early 1990s, estrogen receptors were identified throughout the central nervous system, in areas including circumventricular organs that detect humoral signals associated with body fluid challenges, and hypothalamic and hindbrain nuclei involved in behavioral, neuroendocrine, and cardiovascular responses to body fluid challenges.

View Article and Find Full Text PDF