Caenorhabditis elegans is a powerful model organism used in many research laboratories to understand the consequences of exposure to chemical pollutants, pesticides, and a wide variety of toxic substances. These nematodes are easy to work with and can be used to generate novel research findings, even in the undergraduate biology laboratory. A multi-week laboratory series of authentic, student-driven research projects trains students in a toolkit of techniques and approaches in behavioral measurements, cell biology, and microscopy that they then apply to their projects.
View Article and Find Full Text PDFNeonicotinoids, a class of insecticides structurally similar to nicotine that target biting and sucking insects, are the most widely used insecticides today, in part due to their supposed low toxicity in other organisms. However, a growing body of research has found that even low doses of neonicotinoids can induce unexpected negative effects on the physiology and survival of a wide range of non-target organisms. Importantly, no work has been done on the commercial formulations of pesticides that include imidacloprid as the active ingredient, but that also contain many other components.
View Article and Find Full Text PDFIn a dynamic far-field diffraction experiment, we calculate the largest Lyapunov exponent of a time series obtained from the optical fluctuations in a dynamic diffraction pattern. The time series is used to characterize the locomotory predictability of an oversampled microscopic species. We use a live nematode, Caenorhabditis elegans, as a model organism to demonstrate our method.
View Article and Find Full Text PDFRecent studies have demonstrated the occurrence of microplastic fibers (MFs) in soil environments. To determine whether MFs are harmful for soil biota, we evaluated toxic effects on terrestrial snails (Achatina fulica) after 28 d exposure to polyethylene terephthalate MFs at concentrations of 0.01-0.
View Article and Find Full Text PDFThe decline in amphibian populations is a critical threat to global biodiversity, and pesticide pollution is considered as one of the major factors. Although effects of single pesticides on amphibians have been documented, toxicological interactions prevailing in mixtures of pesticides have not been well elucidated. Strobilurin and succinate dehydrogenase inhibitor (SDHI) fungicides are new types of commonly used pesticides.
View Article and Find Full Text PDFWe report the results of in vivo studies in Caenorhabditis elegans nematodes in which addition of extra virgin olive oil (EVOO) to their diet significantly increased their life span with respect to the control group. Furthermore, when nematodes were exposed to the pesticide paraquat, they started to die after two days, but after the addition of EVOO to their diet, both survival percentage and lifespans of paraquat-exposed nematodes increased. Since paraquat is associated with superoxide radical production, a test for scavenging this radical was performed using cyclovoltammetry and the EVOO efficiently scavenged the superoxide.
View Article and Find Full Text PDFMicroplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e.
View Article and Find Full Text PDFThis manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) is a persistent organic pollutant. Although multiple adverse effects of PFOS have been demonstrated, whether PFOS can accelerate aging and affect animal longevity remains unknown. In Caenorhabditis elegans, we found that a 50 h exposure to 0.
View Article and Find Full Text PDFBackground: This study evaluated the preferences of dental professionals and lay persons with respect to the Recurring Esthetic Dental (RED) Proportion, an objective mathematical tool used in treatment planning the "apparent" widths of maxillary anterior teeth.
Materials And Methods: Stock dentofacial and facial images of a prototypical smiling male and female were digitally altered to demonstrate five different RED proportion relationships (0.62, 0.
This study demonstrates an inexpensive and straightforward technique that allows the measurement of physical properties such as position, velocity, acceleration and forces involved in the locomotory behavior of nematodes suspended in a column of water in response to single wavelengths of light. We demonstrate how to evaluate the locomotion of a microscopic organism using Single Wavelength Shadow Imaging (SWSI) using two different examples. The first example is a systematic and statistically viable study of the average descent of C.
View Article and Find Full Text PDFBackground: Cytoskeletal organization is essential for localization of developmentally significant molecules during Drosophila oogenesis. Swallow (Swa) and an isoform of Hu li tai shao (Ovhts-RC) have been implicated in the organization of actin filaments in developing oocytes but their precise roles have been obscured by the dependence of hts RNA localization on swa function. The functional significance of hts RNA localization in the oocyte has not been established.
View Article and Find Full Text PDFManganese-containing fungicides like Mancozeb have been associated with neurodegenerative conditions like Parkinson's disease. We examined the behavioral damage and differential neuronal vulnerability resulting from Mancozeb exposure using Caenorhabditis elegans, an important mid-trophic level soil organism that is also a powerful model for studying mechanisms of environmental pollutant-induced neurodegenerative disease. The dopamine-mediated swim to crawl locomotory transition behavior is exquisitely vulnerable to Mancozeb, with functional impairment preceding markers of neuronal structural damage.
View Article and Find Full Text PDFIn this paper, we describe and assess a laboratory module that we introduced into an intermediate-level undergraduate course in Neuroscience and Behavior (NEUR201) in order to expose students to the new and rapidly developing neurogenomic and bioinformatics approaches to neuroscience research. The laboratory accompanies a topics-based, highly process-oriented course that explores research methodologies and integrative approaches to particular topics in the field. The laboratory comprises multi-week modules that expand upon the topics being covered in class.
View Article and Find Full Text PDFDuring Drosophila oogenesis, organized microtubule networks coordinate the localization of specific RNAs, the positioning of the oocyte nucleus, and ooplasmic streaming events. We used mutations in mini spindles (msps), a microtubule-associated protein, to disrupt microtubule function during mid- and late-oogenesis, and show that msps is required for these microtubule-based events. Since endoplasmic reticulum (ER) organization is influenced by microtubules in other systems, we hypothesized that using msps to alter microtubule dynamics might affect the structure and organization of the ER in nurse cells and the oocyte.
View Article and Find Full Text PDFPTL-1, a microtubule-associated protein of the structural MAP2/tau family, is the sole member of this gene family in Caenorhabditis elegans. Sequence analysis of available invertebrate genomes revealed a number of single, putative tau-like genes with high similarity to ptl-1. The ptl-1 gene is expressed in a number of cells, most notably mechanosensory neurons.
View Article and Find Full Text PDFMAP2 (microtubule-associated protein 2) is a cytoskeletal phosphoprotein that regulates the dynamic assembly characteristics of microtubules and appears to provide scaffolding for organelle distribution into the dendrites and for the localization of signal transduction apparatus in dendrites, particularly near spines. MAP2 is degraded after ischemia and other metabolic insults, but the time course and initial triggers of that breakdown are not fully understood. This study determined that MAP2 resides in a complex with the NMDA receptor, suggesting that spatially localized changes may be important in the mechanism of MAP2 redistribution and breakdown after oxygen-glucose deprivation (OGD).
View Article and Find Full Text PDF