During Lotus japonicus-Mesorhizobium loti symbiosis, the LOTUS HISTIDINE KINASE1 (LHK1) cytokinin receptor regulates both the initiation of nodule formation and the scope of root infection. However, the exact spatiotemporal mechanism by which this receptor exerts its symbiotic functions has remained elusive. In this study, we performed cell type-specific complementation experiments in the hyperinfected lhk1-1 mutant background, targeting LHK1 to either the root epidermis or the root cortex.
View Article and Find Full Text PDFPurpose: We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potential clinical application in the treatment of proliferative diabetic retinopathy (PDR) and age-related macular degeneration (AMD). We suggest the encapsulation of drugs in implantable sustained release devices, limited by membranes with pores in the tens of nanometers diameter range, which display a slower, quasi-linear release kinetics, and a better selectivity than other membranes. In this paper we explored the feasibility of this approach by testing in vitro several key elements of the nanofilter system: diffusion of drugs of interest, efficacy in producing desirable effects on cells, and biocompatibility of used material with some of the cells encountered in the ocular cavity.
View Article and Find Full Text PDF