In nature, the interactions between proteins and their complements/substrates can dictate complex functions. Herein, we explore how DNA on nucleic acid modified proteins can be used as scaffolds to deliberately control interactions with a peptide complement (by adjusting length, sequence, and rigidity). As model systems, split GFPs were covalently connected through DNA scaffolds (36-58 bp).
View Article and Find Full Text PDFA new type of blue-shifted aggregation-induced emission enhancement was observed for a Sn(iv) fluoride complex, resulting in strong emission in the solid state as compared with that in solutions. The fluorinated Sn(iv) complex has a significantly more intense emission efficiency compared to the chlorinated Sn(iv) complex, which is attributed to stronger σ bonding.
View Article and Find Full Text PDF