Publications by authors named "Kathleen N Dollman"

Orthosuchus stormbergi was a small-bodied crocodyliform, representative of a diverse assemblage of Early Jurassic, early branching crocodylomorph taxa from the upper Elliot Formation of South Africa. The life history of these early branching taxa remains poorly understood, with only sparse investigations into their osteohistology, yet species like Orthosuchus have potential to inform about the macroevolution of growth strategies on the stem leading to crown crocodilians. In order to elucidate the growth patterns of Orthosuchus, we used propagation phase contrast X-ray synchrotron micro-computed tomography to virtually image the osteohistology of the postcrania of two specimens, including multiple elements from the type (SAM-PK-K409), and the femur of a referred specimen (BP/1/4242).

View Article and Find Full Text PDF

Detailed histological analyses are desirable for zebrafish mutants that are models for human skeletal diseases, but traditional histological techniques are limited to two-dimensional thin sections with orientations highly dependent on careful sample preparation. On the other hand, techniques that provide three-dimensional (3D) datasets including µCT scanning are typically limited to visualizing the bony skeleton and lack histological resolution. We combined diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to image late larval and juvenile zebrafish, obtaining high-quality 3D virtual histology datasets of the mineralized skeleton and surrounding soft tissues.

View Article and Find Full Text PDF

All modern mammals are descendants of the paraphyletic non-mammaliaform Synapsida, colloquially referred to as the "mammal-like reptiles." It has long been assumed that these mammalian ancestors were essentially reptile-like in their morphology, biology, and behavior, i.e.

View Article and Find Full Text PDF

The vertebrate trigeminal nerve is the primary mediator of somatosensory information from nerve endings across the face, extending nerve branches through bony canals in the face and mandibles, terminating in sensory receptors. Reptiles evolved several extreme forms of cranial somatosensation in which enhanced trigeminal tissues are present in species engaging in unique mechanosensory behaviors. However, morphology varies by clade and ecology among reptiles.

View Article and Find Full Text PDF

Living crocodylomorphs have an ossified secondary palate with a posteriorly positioned choana that enables their semi-aquatic, predatory ecology. In contrast, the earliest branching members of Crocodylomorpha have an open palate with anteriorly positioned choanae. The evolution of an ossified secondary palate and a posteriorly positioned choana features strongly in hypotheses of broad-scale phylogenetic relationships within Crocodylomorpha.

View Article and Find Full Text PDF
Article Synopsis
  • Metriorhynchoids, a group of marine crocodylomorphs from the Mesozoic era, evolved from semi-aquatic species into fully pelagic forms, prompting research on their sensory and vascular adaptations for underwater life.
  • Analysis of CT scans revealed differences in neurosensory features between extant and extinct crocodyliforms, with crocodylians showing more advanced trigeminal innervation and sensory organs than metriorhynchoids.
  • The study suggests that the sensory limitations in metriorhynchoids stem from their evolutionary position rather than adaptations for life in the ocean, and highlights a potential evolutionary trade-off in sensory capabilities linked to nocturnal lifestyles in their modern relatives.
View Article and Find Full Text PDF

Thalattosuchians were a predominately marine clade of Mesozoic crocodylomorphs, including semi-aquatic teleosauroid and obligately pelagic metriorhynchid subclades. Recent advances in our understanding of thalattosuchian endocranial anatomy have revealed new details of the evolutionary transition from terrestrial to marine to pelagic taxa. Paranasal sinuses, however, have received little attention.

View Article and Find Full Text PDF

Living archosaurs (birds and crocodylians) have disparate locomotor strategies that evolved since their divergence ∼250 mya. Little is known about the early evolution of the sensory structures that are coupled with these changes, mostly due to limited sampling of early fossils on key stem lineages. In particular, the morphology of the semicircular canals (SCCs) of the endosseous labyrinth has a long-hypothesized relationship with locomotion.

View Article and Find Full Text PDF

Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood.

View Article and Find Full Text PDF