Publications by authors named "Kathleen Miller-Rhodes"

Cerebral ischemia triggers a cascade of neuroinflammatory and peripheral immune responses that contribute to post-ischemic reperfusion injury. Prior work conducted in CNS ischemia models underscore the potential to harness non-antibiotic properties of tetracycline antibiotics for therapeutic benefit. In the present study, we explored the immunomodulatory effects of the tetracycline derivative 9-tert-butyl doxycycline (9-TB) in a mouse model of transient global ischemia that mimics immunologic aspects of the post-cardiac arrest syndrome.

View Article and Find Full Text PDF

Background Systemic innate immune priming is a recognized sequela of post-ischemic neuroinflammation and contributor to delayed neurodegeneration. Given mounting evidence linking acute stroke with reactive lung inflammation, we asked whether enhanced expression of the endogenous antioxidant extracellular superoxide dismutase 3 (SOD3) produced by alveolar type II pneumocytes would protect the lung from transient global cerebral ischemia and the brain from the delayed effects of ischemia-reperfusion. Methods and Results Following 15 minutes of global cerebral ischemia or sham conditions, transgenic SOD3 and wild-type mice were followed daily for changes in weight, core temperature, and neurological function.

View Article and Find Full Text PDF

Systemic inflammation and multi-organ failure represent hallmarks of the post-cardiac arrest syndrome (PCAS) and predict severe neurological injury and often fatal outcomes. Current interventions for cardiac arrest focus on the reversal of precipitating cardiac pathologies and the implementation of supportive measures with the goal of limiting damage to at-risk tissue. Despite the widespread use of targeted temperature management, there remain no proven approaches to manage reperfusion injury in the period following the return of spontaneous circulation.

View Article and Find Full Text PDF