Understanding plant ecophysiological functioning is critical in formulating effective ecologically based strategies to conserve and enhance resiliency and resistance in sagebrush steppe, as well as improving their restoration following degradation by interactive effects of climate change, wildland fire and invasive annual grasses. Recent research has shown increased reproductive photosynthesis following floral defoliation can be important to reproductive potential, yet how this is expressed in plant material selected for different functional attributes is unknown. To address this, we measured photosynthetic gas exchange in clipped and unclipped basal florets and flag leaves of two germplasms of the native perennial bunchgrass, bluebunch wheatgrass, var.
View Article and Find Full Text PDFPrescribed fire is widely used for ecosystem restoration, yet the mechanisms that determine its effectiveness remain poorly characterized. Because soil hydrology influences ecosystem processes like erosion, runoff, and plant competition, it is important to understand how fire affects soil hydrology. A systematic approach to understanding relationships among vegetation, topography, and fire is needed to advance knowledge of how fire influences soil properties that in turn affect restoration success.
View Article and Find Full Text PDFGrasses accumulate high concentrations of silicon (Si) in their tissues, with potential benefits including herbivore defense, improved water balance, and reduced leaf construction costs. Although Si is one of the most widely varying leaf constituents among individuals, species, and ecosystems, the environmental forces driving this variation remain elusive and understudied. To understand relationships between environmental factors and grass Si accumulation better, we analyzed foliar chemistry of grasses from 17 globally distributed sites where nutrient inputs and grazing were manipulated.
View Article and Find Full Text PDFLeaf mass per area (LMA) is a primary plant functional trait that represents the cost of constructing a leaf. Ultimately, plants modify LMA by altering leaf thickness (LT), leaf dry matter content (LDMC), or both. While LMA can be modified through both of these constituents, studies of LMA have found that there is variation in whether LT or LDMC changes are responsible for LMA-and the relationships change depending on the species or functional groups being compared.
View Article and Find Full Text PDFGrasses (Poaceae) lack the complex biochemical pathways and structural defenses employed by other plant families; instead they deposit microscopic silica (SiO2) granules in their leaf blades (i.e., phytoliths) as a putative defense strategy.
View Article and Find Full Text PDF