Immune checkpoints limit the activation of the immune system and serve an important homeostatic function but can also restrict immune responses against tumors. Inhibition of specific immune checkpoint proteins such as the B7:CD28 family members programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) has transformed the treatment of various cancers by promoting the anti-tumor activation of immune cells. In contrast to these effects, the V-domain immunoglobulin suppressor of T-cell activation (VISTA) regulates the steady state of the resting immune system and promotes homeostasis by mechanisms distinct from PD-1 and CTLA-4.
View Article and Find Full Text PDFBackground: Cluster of differentiation (CD)73-adenosine and transforming growth factor (TGF)-β pathways are involved in abrogated antitumor immune responses and can lead to protumor conditions. This Phase 1 study (NCT03954704) evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of dalutrafusp alfa (also known as GS-1423 and AGEN1423), a bifunctional, humanized, aglycosylated immunoglobulin G1 kappa antibody that selectively inhibits CD73-adenosine production and neutralizes active TGF-β signaling in patients with advanced solid tumors.
Methods: Dose escalation started with an accelerated titration followed by a 3+3 design.
J Immunother Cancer
February 2022
Background: Soluble PD-L1 (sPD-L1) has been associated with worse prognosis in numerous solid tumors. We determined sPD-L1 levels before and during nivolumab treatment in two prospective clinical trials of metastatic clear cell renal cell carcinoma (RCC) and melanoma patients, and investigated its relationship to clinical factors, biomarkers, and outcome.
Methods: Using a new Single Molecule Array assay, serum sPD-L1 level were determined in RCC (CheckMate 009, n=91) and melanoma (CheckMate 038-Part 1, n=78) prior to, and at two time points on treatment.
PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1).
View Article and Find Full Text PDFThe tumor immune microenvironment plays a critical role in cancer progression and response to immunotherapy in clear cell renal cell carcinoma (ccRCC), yet the composition and phenotypic states of immune cells in this tumor are incompletely characterized. We performed single-cell RNA and T cell receptor sequencing on 164,722 individual cells from tumor and adjacent non-tumor tissue in patients with ccRCC across disease stages: early, locally advanced, and advanced/metastatic. Terminally exhausted CD8 T cells were enriched in metastatic disease and were restricted in T cell receptor diversity.
View Article and Find Full Text PDFWe have developed a personalized vaccine whereby patient derived leukemia cells are fused to autologous dendritic cells, evoking a polyclonal T cell response against shared and neo-antigens. We postulated that the dendritic cell (DC)/AML fusion vaccine would demonstrate synergy with checkpoint blockade by expanding tumor antigen specific lymphocytes that would provide a critical substrate for checkpoint blockade mediated activation. Using an immunocompetent murine leukemia model, we examined the immunologic response and therapeutic efficacy of vaccination in conjunction with checkpoint blockade with respect to leukemia engraftment, disease burden, survival and the induction of tumor specific immunity.
View Article and Find Full Text PDFV-domain Ig suppressor of T cell activation (VISTA) is a B7 family member that maintains T cell and myeloid quiescence and is a promising target for combination cancer immunotherapy. During inflammatory challenges, VISTA activity reprograms macrophages towards reduced production of proinflammatory cytokines and increased production of interleukin (IL)-10 and other anti-inflammatory mediators. The interaction of VISTA with its ligands is regulated by pH, and the acidic pH ~6.
View Article and Find Full Text PDFBlockade of the PD1 pathway is a broadly effective cancer therapy, but additional immune-inhibitory pathways contribute to tumor immune evasion. HERV-H LTR-associating 2 (HHLA2; also known as B7H5 and B7H7) is a member of the B7 family of immunoregulatory ligands that mediates costimulatory effects through its interaction with the CD28 family member transmembrane and immunoglobulin domain containing 2 (TMIGD2). However, HHLA2 has also been known to have inhibitory effects on T cells.
View Article and Find Full Text PDFThe interaction of programmed cell death 1 ligand 1 (PDL1) with its receptor programmed cell death 1 (PD1) inhibits T cell responses, and blockade of this interaction has proven to be an effective immunotherapy for several different cancers. PDL1 can be expressed on the surface of tumour cells, immune cells and other cells in the tumour microenvironment but is also found in extracellular forms. Recent studies have explored the importance of different forms of extracellular PDL1, such as on exosomes or as a freely soluble protein, and have shown that PDL1-expressing exosomes can inhibit antitumour immune responses.
View Article and Find Full Text PDFClin Cancer Res
April 2019
Purpose: Immune-related RECIST (irRECIST) were designed to capture atypical responses seen with immunotherapy. We hypothesized that, in patients with metastatic clear cell renal cell carcinoma (mccRCC), candidate biomarkers for nivolumab response would show improved association with clinical endpoints capturing atypical responders (irRECIST) compared with standard clinical endpoints (RECISTv1.1).
View Article and Find Full Text PDFTargeting immune checkpoint pathways, such as programmed death ligand-1 (PD-L1, also known as CD274 or B7-H1) or its receptor programmed cell death-1 (PD-1) has shown improved survival for patients with numerous types of cancers, not limited to lung cancer, melanoma, renal cell carcinoma, and Hodgkin lymphoma. PD-L1 is a co-inhibitory molecule whose expression on the surface of tumor cells is associated with worse prognosis in many tumors. Here we describe a splice variant (secPD-L1) that does not splice into the transmembrane domain, but instead produces a secreted form of PD-L1 that has a unique 18 amino acid tail containing a cysteine that allows it to homodimerize and more effectively inhibit lymphocyte function than monomeric soluble PD-L1.
View Article and Find Full Text PDFBlockade of the pathway including programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) has produced clinical benefits in patients with a variety of cancers. Elevated levels of soluble PD-L1 (sPD-L1) have been associated with worse prognosis in renal cell carcinoma and multiple myeloma. However, the regulatory roles and function of sPD-L1 particularly in connection with immune checkpoint blockade treatment are not fully understood.
View Article and Find Full Text PDFOnly a minority of cancer patients respond to anti PD-1 immunotherapy. A recent study demonstrates that PD-1 therapy-resistant melanoma patients present distinct signatures of upregulated genes involved in immunosuppression, angiogenesis, monocyte and macrophage chemotaxis, extracellular matrix remodeling, and epithelial-mesenchymal transition (EMT). Combination targeting of these pathways with PD-1 may help overcome PD-1 resistance, thus producing effective antitumor immunity.
View Article and Find Full Text PDFBackground: Inhibiting VEGF and mammalian target of rapamycin (mTOR) pathways are standard treatment approaches for patients with metastatic renal cell carcinoma (mRCC). Here we report the activity and safety of the VEGF ligand inhibitor bevacizumab and the mTOR inhibitor temsirolimus combination in patients with clear cell (CC) and non-clear cell (NCC) mRCC whose disease had failed to respond to prior VEGF blockade.
Patients And Methods: In this phase 2 investigator-initiated multicenter study, patients received bevacizumab and temsirolimus.
Blocking the programmed death-1 (PD-1) pathway has clinical benefit in metastatic cancer and has led to the approval of the mAbs pembrolizumab and nivolumab to treat melanoma and nivolumab for non-small cell lung cancer. Expression of PD-L1 on the cell surface of either tumor cells or infiltrating immune cells is associated with a higher likelihood of response to PD-1 blockade in multiple studies. Most mAbs to PD-L1 in use are directed to its extracellular domain and immunohistochemically stain tumor tissue with a mixture of cytoplasmic and membrane staining.
View Article and Find Full Text PDFTargeting immune checkpoints such as programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has achieved noteworthy benefit in multiple cancers by blocking immunoinhibitory signals and enabling patients to produce an effective antitumour response. Inhibitors of CTLA4, PD1 or PDL1 administered as single agents have resulted in durable tumour regression in some patients, and combinations of PD1 and CTLA4 inhibitors may enhance antitumour benefit. Numerous additional immunomodulatory pathways as well as inhibitory factors expressed or secreted by myeloid and stromal cells in the tumour microenvironment are potential targets for synergizing with immune checkpoint blockade.
View Article and Find Full Text PDFPurpose: Blocking the interaction between the programmed cell death (PD)-1 protein and one of its ligands, PD-L1, has been reported to have impressive antitumor responses. Therapeutics targeting this pathway are currently in clinical trials. Pembrolizumab and nivolumab are the first of this anti-PD-1 pathway family of checkpoint inhibitors to gain accelerated approval from the US Food and Drug Administration (FDA) for the treatment of ipilimumab-refractory melanoma.
View Article and Find Full Text PDFOncology (Williston Park)
November 2014
Blocking the programmed cell death 1 (PD-1) pathway with monoclonal antibodies has shown promising antitumor responses in clinical trials, with less toxicity than has been seen with prior immune therapies such as interleukin 2 and ipilimumab. Pembrolizumab, an anti-PD-1 antibody, recently gained US Food and Drug Administration (FDA) accelerated approval for the treatment of patients with ipilimumab-refractory melanoma, while nivolumab, another anti-PD-1 antibody, and MPDL3280A, an anti-programmed cell death 1 ligand (PD-L1) antibody, have been granted FDA "breakthrough designation" for treatment of subsets of patients with refractory Hodgkin lymphoma and metastatic bladder cancer, respectively. Encouraging antitumor activity has also been seen with these agents in patients with other malignancies, including non-small-cell lung cancer and head and neck cancer, tumors not previously thought to be immune-responsive.
View Article and Find Full Text PDFBackground: Several large, randomized trials established the benefits of adjuvant trastuzumab with chemotherapy. However, the benefit for women with small, node-negative HER2-positive (HER2+) disease is unknown, as these patients were largely excluded from these trials. Therefore, a retrospective, single-institution, sequential cohort study of women with small, node-negative, HER2+ breast cancer who did or did not receive adjuvant trastuzumab was conducted.
View Article and Find Full Text PDFAngiogenic growth factors induce the transcription of the cell surface peptidase CD13/APN in activated endothelial cells of the tumor vasculature. Inhibition of CD13/APN abrogates endothelial invasion and morphogenesis in vitro and tumor growth in vivo suggesting a critical functional role for CD13 in angiogenesis. Experiments to identify the transcription factors responsible for this regulation demonstrated that exogenous expression of the proto-oncogene c-Maf, but not other bZip family members tested, potently activates transcription from a critical regulatory region of the CD13 proximal promoter between -115 and -70 bp which is highly conserved among mammalian species.
View Article and Find Full Text PDFThe frameshift mutagenicity of 9-aminoacridine (9AA) was compared with that of quinacrine, the acridine mustards ICR-191 and quinacrine mustard (QM), and the nitroacridine Entozon in the lacZ reversion assay in Escherichia coli. As intercalating agents, 9AA and quinacrine cause mutations through noncovalent associations with DNA. Mustards and nitroacridines form covalent adducts in DNA and give rise to different spectra of mutations.
View Article and Find Full Text PDF