Exposures to high levels of environmental selenium have been associated with motor neuron disease in both animals and humans and high levels of selenite have been identified in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). We have shown previously that exposures to high levels of sodium selenite in the environment of Caenorhabditis elegans adult animals can induce neurodegeneration and cell loss resulting in motor deficits and death and that this is at least partially caused by a reduction in cholinergic signaling across the neuromuscular junction. Here we provide evidence that reduction in insulin/insulin-like (IIS) signaling alters response to high dose levels of environmental selenium which in turn can regulate the IIS pathway.
View Article and Find Full Text PDFSelenium is an essential micronutrient required for cellular antioxidant systems, yet at higher doses it induces oxidative stress. Additionally, in vertebrates environmental exposures to toxic levels of selenium can cause paralysis and death. Here we show that selenium-induced oxidative stress leads to decreased cholinergic signaling and degeneration of cholinergic neurons required for movement and egg-laying in Caenorhabditis elegans.
View Article and Find Full Text PDFSelenium is an essential micronutrient that functions as an antioxidant. Yet, at higher concentrations, selenium is pro-oxidant and toxic. In extreme cases, exposures to excess selenium can lead to death or selenosis, a syndrome characterized by teeth, hair and nail loss, and nervous system alterations.
View Article and Find Full Text PDFThe E2F1 transcriptional regulator has been shown to exhibit altered expression and localization in HIVE and SIVE. However, other E2F family members are expressed in mature neurons and participate in neuronal differentiation. In an in vitro model of neuronal differentiation, E2F4 protein levels have been shown to increase.
View Article and Find Full Text PDFThe retinoblastoma susceptibility gene product (pRb) and E2F1 have been found to exhibit altered localization and increased staining in several neurodegenerative diseases. We have observed similar localization in primary murine cortical cultures treated with neurotrophic factors (NTF) or chemokines. In untreated cultures, E2F1 exhibited minimal immunostaining using the KH95 antibody, which recognizes the pRb interaction domain.
View Article and Find Full Text PDFThe fetal Alz-50 reactive clone 1 (FAC1) protein exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. Using the yeast two-hybrid screen, the human orthologue of Keap1 (hKeap1) was identified as a FAC1 interacting protein. Keap1 is an important regulator of the oxidative stress response pathway through its interaction with the Nrf family of transcription factors.
View Article and Find Full Text PDF