Publications by authors named "Kathleen L Londry"

A nitrifying sequencing batch reactor, operated under alternating anoxic/aerobic conditions achieved twice the nitrification rates of its strictly aerobic counterpart. Microbial populations in both reactors were examined with fluorescent in situ hybridization (FISH) and kinetic batch studies to determine the effects of ammonium, nitrite, and oxygen. FISH revealed a dominance of rapid nitrifiers like Nitrosomonas and Nitrobacter (79.

View Article and Find Full Text PDF

Hypersaline springs that host unique mid-continent marine ecosystems were examined in central Manitoba, Canada. The springs originate from a reflux of glacial meltwater that intrudes into underlying bedrock and dissolved buried salt beds. Two spring types were distinguished based both on flow rate and geochemistry.

View Article and Find Full Text PDF

The effectiveness of partial ozonation of return activated sludge for enhancing denitrification and waste sludge minimization were examined. A pair of nitrifying sequencing batch reactors was operated in either aerobic or alternating anoxic/aerobic conditions, with one control and one ozonated reactor in each set. The amount of solids produced decreased with the ozone dose.

View Article and Find Full Text PDF

Sorption of the estrogens estrone (E1), 17beta-estradiol (E2) and 17alpha-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL-1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2.

View Article and Find Full Text PDF

Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-alpha-ethynylestradiol (EE2) and 17-beta-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions.

View Article and Find Full Text PDF

Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion.

View Article and Find Full Text PDF