Publications by authors named "Kathleen L Foster"

We have read with great interest the paper published by the Journal of Anatomy [244(5), 2024, 861-872] on Is human height based on a Lucas sequence relationship between the foot height, tibial length, femur length and upper body length? by Paley et al. The authors show that foot height, tibial length, femur length and upper body length follow a generalized Lucas sequence. Our letter demonstrates that their result is indeed stronger, as their data follow the original, homogeneous Lucas sequence.

View Article and Find Full Text PDF

Terrestrial locomotion is a complex phenomenon that is often linked to the survival of an individual and of an animal species. Mathematical models seek to express in quantitative terms how animals move, but this is challenging because the ways in which the nervous and musculoskeletal systems interact to produce body movement is not completely understood. Models with many variables tend to lack biological interpretability and describe the motion of an animal with too many independent degrees of freedom.

View Article and Find Full Text PDF

Typically, animal locomotion studies involve consecutive strides, which are frequently assumed to be independent with parameters that do not vary across strides. This assumption is often not tested. However, failing in particular to account for dependence across strides may cause an incorrect estimate of the uncertainty of the measurements and thereby lead to either missing (overestimating variance) or over-evaluating (underestimating variance) biological signals.

View Article and Find Full Text PDF

Amphibious fishes moving from water to land experience continuous changes in environmental forces. How these subtle changes impact behavioural transitions cannot be resolved by comparisons of aquatic and terrestrial locomotion. For example, aquatic and terrestrial locomotion appear distinct in the actinopterygian fish Polypterus senegalus; however, it is unclear how gradual water level changes influence the transition between these locomotor behaviours.

View Article and Find Full Text PDF

The spring-mass model is a model of locomotion aimed at giving the essential mathematical laws of the trajectory of the center of mass of an animal during bouncing gaits, such as hopping (one-dimensional) and running (two-dimensional). This reductionist mechanical system has been extensively investigated for locomotion over horizontal surfaces, whereas it has been largely neglected on other ecologically relevant surfaces, including inclines. For example, how the degree of inclination impacts the dynamics of the center of mass of the spring-mass model has not been investigated thoroughly.

View Article and Find Full Text PDF

Arboreal animals must learn to modulate their movements to overcome the challenges posed by the complexity of their heterogeneous environment, reduce performance failure, and survive. Anolis lizards are remarkable in the apparent ease with which they conquer this heterogeneity, demonstrating an impressive ability to modulate their locomotor behavior to maintain stable locomotion on widely disparate surfaces. Significant progress has been made towards understanding the impact of substrate structure on the behavioral plasticity of arboreal species, but it is unclear whether the same strategies employed to shift between substrates in one context can be employed to shift between those same substrates in a new context.

View Article and Find Full Text PDF

This study investigates the relationship between socio-economic determinants pre-dating the pandemic and the reported number of cases, deaths, and the ratio of deaths/cases in 199 countries/regions during the first months of the COVID-19 pandemic. The analysis is performed by means of machine learning methods. It involves a portfolio/ensemble of 32 interpretable models and considers the case in which the outcome variables (number of cases, deaths, and their ratio) are independent and the case in which their dependence is weighted based on geographical proximity.

View Article and Find Full Text PDF

The ability to modulate the function of muscle is integral to an animal's ability to function effectively in the face of widely disparate challenges. This modulation of function can manifest through short-term changes in neuromuscular control, but also through long-term changes in force profiles, fatiguability and architecture. However, the relative extent to which shorter-term modulation and longer-term plasticity govern locomotor flexibility remains unclear.

View Article and Find Full Text PDF

A central question in biology is how animals successfully behave under complex natural conditions. Although changes in locomotor behaviour, motor control and force production in relation to incline are commonly examined, a wide range of other factors, including a range of perch diameters, pervades arboreal habitats. Moving on different substrate diameters requires considerable alteration of body and limb posture, probably causing significant shifts in the lengths of the muscle-tendon units powering locomotion.

View Article and Find Full Text PDF

Successful locomotion through complex, heterogeneous environments requires the muscles that power locomotion to function effectively under a wide variety of conditions. Although considerable data exist on how animals modulate both kinematics and motor pattern when confronted with orientation (i.e.

View Article and Find Full Text PDF

The range of inclines and perch diameters in arboreal habitats poses a number of functional challenges for locomotion. To effectively overcome these challenges, arboreal lizards execute complex locomotor behaviors involving both the forelimbs and the hindlimbs. However, few studies have examined the role of forelimbs in lizard locomotion.

View Article and Find Full Text PDF