Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and regenerative capacity, which can lead to sarcopenia and increased mortality. Although the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia.
View Article and Find Full Text PDFIn response to muscle injury, satellite cells activate the p38α/β MAPK pathway to exit quiescence, then proliferate, repair skeletal muscle, and self-renew, replenishing the quiescent satellite cell pool. Although satellite cells are capable of asymmetric division, the mechanisms regulating satellite cell self-renewal are not understood. We found that satellite cells, once activated, enter the cell cycle and a subset undergoes asymmetric division, renewing the satellite cell pool.
View Article and Find Full Text PDFSkeletal muscle contains progenitor cells (satellite cells) that maintain and repair muscle. It also contains muscle side population (SP) cells, which express Abcg2 and may participate in muscle regeneration or may represent a source of satellite cell replenishment. In Abcg2-null mice, the SP fraction is lost in skeletal muscle, although the significance of this loss was previously unknown.
View Article and Find Full Text PDFUnderstanding the basis of normal heart remodeling can provide insight into the plasticity of the cardiac state, and into the potential for treating diseased tissue. In Drosophila, the adult heart arises during metamorphosis from a series of events, that include the remodeling of an existing cardiac tube, the elaboration of new inflow tracts, and the addition of a layer of longitudinal muscle fibers. We have identified genes active in all these three processes, and studied their expression in order to characterize in greater detail normal cardiac remodeling.
View Article and Find Full Text PDFSkeletal muscle satellite cells, located between the basal lamina and plasma membrane of myofibers, are required for skeletal muscle regeneration. The capacity of satellite cells as well as other cell lineages including mesoangioblasts, mesenchymal stem cells, and side population (SP) cells to contribute to muscle regeneration has complicated the identification of a satellite stem cell. We have characterized a rare subset of the muscle SP that efficiently engrafts into the host satellite cell niche when transplanted into regenerating muscle, providing 75% of the satellite cell population and 30% of the myonuclear population, respectively.
View Article and Find Full Text PDF